Volume 5, Issue 3 (21 2012)                   ijhe 2012, 5(3): 355-366 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Massoudinejad M R, Sharifi H, Mazaheri Tehrani A. Investigation the Efficiency of Electrolysis Process using 3 Dimensional Graphite Electrodes for Decolonization of Phenolphthalein and Phenol red from Aqueous Environments. ijhe 2012; 5 (3) :355-366
URL: http://ijhe.tums.ac.ir/article-1-17-en.html
1- , massoudi@sbmu.ac.ir
Abstract:   (15068 Views)
MicrosoftInternetExplorer4 Background and Objectives: The presence of chemical dyes in the water resources not only pollutes them, but also brings about death of organisms and serious indemnities to the environment through stopping oxygen production and preventing penetration of the sunlight. In this study, we investigated the efficiency of the electrolysis process for decolonization of phenolphthalein and phenol red from aqueous environment.
Materials and Methods: The experiments were conducted in an electrochemical reactor having a working volume of 1 liter equipped with 2 graphite electrodes. This study was conducted at laboratory scale. Samples were prepared by dissolving two phenol red and phenolphthalein dyes in drinking water. Then, the effect of operating parameters such as voltage, inter-electrode distance, and NaCl concentration on the complete dye removal was determined considering optimum retention time using  Factorial variance analyses and the graphs were plotted using MS Excel software.
Results: the results showed that the optimum conditions for completely removal of phenolphthalein was achieved applying a voltage of 48 V, the retention time of 9 minutes, 5 cm inter-electrode distance, and the salt concentration of 1.5 g/l, whereas, complete removal of phenol red was achieved applying a voltage of 48 V, the retention time of 8 minutes, 5 cm inter-electrode distance, and the salt concentration of 2 g/l. Under these conditions, COD removal efficiency for phenol red and phenolphthalein was 85 and 80 percent respectively.
Conclusion: This study revealed that electrolysis process is an effective method to remove both phenolphthalein and phenol red dyes from effluent, because it can completely remove the dyes in a short time.

Full-Text [PDF 986 kb]   (3305 Downloads)    
Type of Study: Research | Subject: General
Received: 2012/04/2 | Accepted: 2012/07/1 | Published: 2012/10/13

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb