Volume 7, Issue 1 (7-2014)                   ijhe 2014, 7(1): 21-34 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kakavandi B, Rezaei Kalantary R, Jonidi Jafari A, Esrafily A, Gholizadeh A, Azari A. Efficiency of powder activated carbon magnetized by Fe3O4 nanoparticles for amoxicillin removal from aqueous solutions: Equilibrium and kinetic studies of adsorption process. ijhe 2014; 7 (1) :21-34
URL: http://ijhe.tums.ac.ir/article-1-5293-en.html
1- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2- Faculty of Environmental Health group, Health School, North Khorasan University of Medical Sciences,Bojnurd, Iran , rezaei.r@iums.ac.ir
3- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
4- Faculty of Environmental Health group, Health School, North Khorasan University of Medical Sciences,Bojnurd, Iran
5- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (11264 Views)

Background and Objective: Extreme use of antibiotics and discharging them to the environment lead to serious consequences. Activated carbon is the most commonly adsorbent for these contaminants but its main drawback is difficulty of its separation. The objective of this study was synthesis of magnetic activated carbon by Fe3O4 and investigating its efficiency in adsorption of amoxicillin from synthetic wastewater. Materials and Methods: Materials and Methods: Physical and structural characteristics of the adsorbent synthesized were analyzed using SEM, TEM, XRD and BET techniques. The effect of factors like pH, initial concentration of amoxicillin and adsorbent, contact time, and temperature were investigated to determine thermodynamic parameters, equilibrium isotherms, and kinetics of adsorption process. Results: Physical characteristics of the magnetized activated carbon showed that Fe3O4 nanoparticles had the average size of 30-80 nm and BET surface area was 571 m2/g. The optimum conditions of adsorption were: pH=5, contact time=90min, adsorbent dose of 1g/L and temperature 200C. The equilibrium isotherms data showed that the adsorption process fitted both Freundlich and Longmuir models with the maximum capacity of 136.98 mg/g. The kinetic of the adsorption process followed pseudo second-order model. The negative values of &DeltaH0 and &DeltaG0 obtained from studying the adsorption thermodynamic suggested that amoxicillin adsorption on magnetic activated carbon was exothermic and spontaneous. Conclusion: The present study showed that the magnetic activated carbon has high potential for adsorption of amoxicillin, in addition to features like simple and rapid separation. Therefore, it can be used for adsorption and separation of such pollutants from aqueous solutions.

Full-Text [PDF 1168 kb]   (13075 Downloads)    
Type of Study: Research | Subject: General
Received: 2014/08/12 | Accepted: 2014/08/12 | Published: 2014/08/12

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb