Volume 8, Issue 4 (3-2016)                   ijhe 2016, 8(4): 491-508 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei F, Moussavi G, Riyahi Bakhtiari A, Yamini Y. Toluene adsorption from waste air stream using activated carbon impregnated with manganese and magnesium metal oxides. ijhe 2016; 8 (4) :491-508
URL: http://ijhe.tums.ac.ir/article-1-5500-en.html
1- Ph.D. of Environmental Pollution, Department of Environmental Pollution, Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
2- Full professor of Environmental Health Engineering, Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran , moussavi@modares.ac.ir
3- Associate professor of Natural Resources Sciences, Department of Environmental Pollution, Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
4- Full professor of Analytical Chemistry, Department of Analytical Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
Abstract:   (7870 Views)

Background and Objectives: Adsorption is one of the most common methods for VOCs elimination from waste air stream. The study on the application of a selective and cheap adsorbent with high efficiency in VOCs removal is important from economic aspects. In this study, the potential of MnO/GAC and MgO/GAC composites was investigated for toluene adsorption from air stream at  lab scale.

Material and methods: The MnO/GAC and MgO/GAC adsorbents were prepared through Sol-gel method and then were characterized using BET, XRF, and SEM analysis. The effect of operational parameters including; retention time (0.5, 1, 1.5, 2, and 4 S), inlet toluene concentration (100, 200, 300, and 400 ppmv) and the temperature of the air stream (25, 50, 75, and 100 ˚C) were examined on the efficiency of both adsorbents. The efficiency of MnO/GAC and MgO/GAC were determined from the breakthrough time and adsorption capacity and the results were compared statistically.

Results: The breakthrough time of MnO/GAC and MgO/GAC adsorbents increased 90% by increasing retention time from 0.5 to 4 S. Adsorption capacity of MgO/GAC and MnO/GAC was increased 39and 61.1% by increasing inlet toluene concentration from 100 to 400 ppmv, respectively. Breakthrough time of MgO/GAC and MnO/GAC decreased 65 and 59% by increasing inlet toluene concentration from 100 to 400 ppmv, respectively. The efficiency of MgO/GAC and MnO/GAC adsorbents had a direct relationship with the increase of air temperature from 25 to 100 ˚C. Accordingly, the efficiency of MgO/GAC and MnO/GAC was increased 78 and 32% by increasing air temperature, respectively.  

Conclusion: The results of the study showed that MgO/GAC and MnO/GAC adsorbents had high efficiency in toluene removal from air stream. The difference between the efficiency of MgO/GAC and MnO/GAC adsorbents was significant and MgO/GAC adsorbent showed higher efficiency than MnO/GAC for toluene adsorption from waste air.  

Full-Text [PDF 2364 kb]   (4069 Downloads)    
Type of Study: Research | Subject: Air
Received: 2015/07/12 | Accepted: 2016/01/4 | Published: 2016/03/2

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb