Volume 10, Issue 3 (12-2017)                   ijhe 2017, 10(3): 349-362 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamani H, Panahi A, Ashrafi S, Kord Mostafapour F, Omrani Gargari N. Efficiency evaluation mesopore sillica nanoporous materials in removal of cephalexin from aqueous solution by response surface methodology . ijhe 2017; 10 (3) :349-362
URL: http://ijhe.tums.ac.ir/article-1-5888-en.html
1- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2- Department of Environmental Health, Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran , ayatpanahi@yahoo.com
3- Department of Environmental Health, School of Health, Guilan University of Medical Sciences, Rasht, Iran
4- Department of Environmental Health Safety, Environmental Health Safety, Student University of Azad Islamic Barajin, Ghazvin, Iran
Abstract:   (4973 Views)
Background and Objective: Extreme use of antibiotics and discharging to the environment lead to serious consequences. Mesoporous silica such as MCM-41 material is widely used to absorb contaminants from the aqueous solution. The aim of this study was to evaluate mesoporous synthesis of MCM-41 and its efficacy for removal of the antibiotic cephalexin from aqueous solution.
Materials and Methods: Physical characteristics and absorbent structure synthesized by techniques BET, FTIR and XRD were analyzed. The effect of variables such as pH values (3, 7, 11), the dose of MCM-41 (200, 500, 800 mg/L), initial concentration of cephalexin (50, 75, 100 mg/L), contact time (30, 60, 90 min), and process temperature (20, 30, 40 0C) on absorption of cephalexin were studied. In order to achieve the optimal experimental conditions, response surface methodology (RSM) model was used.
Results: The results showed that pH (p=0.0001), adsorbent dose (p=0.0001), initial concentration of cephalexin (p=0.0001), contact time (p=0.01), pH2 (p=0.0002) and pH (p=0.04) and initial concentration had a significant impact on the response variable. The optimum removal condition based on analysis of variance and the model was at the reaction time 90 min, pH 3, initial concentration 50 mg/L and adsorption dose 600 mg/L. Under these conditions, the removal efficiency of 81.1% was achieved.
Conclusion: The results showed that adsorption process with the mesoporous MCM-41 had a high efficiency on the removal of cephalexin from the aqueous environments.
 
Full-Text [PDF 1846 kb]   (3287 Downloads)    
Type of Study: Research | Subject: wastewater
Received: 2017/05/17 | Accepted: 2017/11/1 | Published: 2017/12/12

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb