Background and objective: The conventional chemical and physical methods for water disinfection include the application of ultraviolet (UV), chlorination, and ozonation. Water disinfection by electrochemical methods has been increasingly carried out recently. The goal of this applied - analytical research is to investigate the removal of E. coli bacteria, as the index of water microbial contamination, from drinking water by electrochemistry method.
Materials and Methods: In this study, the contaminated water sample was prepared through adding 102 and 103 E. coli bacteria per ml of drinking water. The contaminated water entered into the electrochemical reactor and different conditions were studied, included pH (6, 7, and 8), number of bacterium (102 and 103 per milliliter), time (5, 10, 20, and 40 min), distance between electrodes (2,2.5, 3, and 3.5 cm), and voltage (10, 20, 30, and 40 volts).
Results: The findings indicated the indirect correlation between bacteria removal efficiency and the variable distances between two electrode. The results indicated the direct correlation between bacteria removal efficiency and the variables voltage and electrolysis times. The results showed that the best conditions for removal of 102 and 103 bacteria per milliliter obtained at pH 7, electrolysis time of 10 min, distance between electrodes 2 cm, in the voltage 20 and 30 volts, respectively.
Conclusion: The results of this study indicate that voltage and electrolysis time have the most significant effect on electrolysis efficiency. Research findings showed that electrolysis is a promising method for removal of E. coli bacterium from drinking water.
Rights and Permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |