Background and Objective: Heavy metals are regarded as serious contaminants due to their toxicity, persistence in natural conditions, and ability to enter and accumulate (bioaccumulation and biomagnification) in food chains. The aim of this study was to investigate the concentrations of the heavy metals Pb, Cd, Cu, Zn, Cr, Fe and Ni in surface agricultural soils of the Miandoab landfill area.
Materials and Methods: In this study, 57 soil samples were collected from a depth of 0-20 cm. After preparing and digesting in the laboratory, the samples were analyzed using a inductively coupled plasma spectrometer (ICP-OES). The Ecological Risk Potential Index (EPRI), Earth Accumulation Index (Igeo), Principal Components Test (PCA) Pearson's Correlation, Cluster Analysis, and One-T-test were utilized. Statistical processing was conducted using SPSS software.
Results: According to the results of the single T-test, the average concentrations of Pb, Cd, Cu, Zn, Cr, Ni did not significantly differ from their background concentration in the soil (p≥0.05). A significant difference was pbserved only for Fe (p<0.05), indicating a geological origin for this element. The EPRI was within the low-risk range, with an average value of 46.95. PCA revealed that the first factor was positively associated with Cr, Pb and Fe; the second factor with Zn and Cu; and the third factor with Cd. Cluster analysis showed that Fe was predominantly influenced by natural resources. According to the land accumulation index, all metals, except Cu, were classified non-polluted or slightly polluted at stations 2 and 4.
Conclusion: The origin of elements is related to both natural and human factors. Specifically, Cr, Pb and Cd are more likely to originate from man-made sources, while Fe primarily comes from natural sources. The decrease in the concentration of metals can be attributed to continuous and annual ploughing, inactivity of the landfill, biological absorption by crops, soil leaching and transporting to lower depths.