Search published articles


Showing 2 results for Akbarpour

K Yaghmaeian, N Jaafarzadeh, R Nabizadeh, H Rasoulzadeh, B Akbarpour,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objective: Arsenic is one of the most toxic pollutants in groundwater and surface water. Arsenic could have lots of adverse impacts on human health. Therefore, access to new technologies is required to achieve the arsenic standard.

Materials and Methods: The present study was conducted at laboratory scale in non-continuous batches. The adsorbent of zero-valent iron nanoparticles -Chitosan was produced through reducing ferric iron by sodium borohydride (NaBH4) in the presence of chitosan as a stabilizer. At first, the effect of various parameters such as contact time (5-120 min), pH (3-10), adsorbent dose (0.3-3.5 g/L) and initial concentration of arsenate (2-10 mg/L) were investigated on process efficiency. Then optimum conditions in terms of contact time, pH, adsorbent dose and initial concentration of arsenate were determined by RSM method. Freundlich and Langmuir isotherm model equilibrium constant, pseudo-first and second order kinetic constants were calculated. The residual arsenate was measured y using ICP-AES.

Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of arsenate were 7.16, 3.04 g/L, 91.48 min, and 9.71 mg/L respectively. Langmuir isotherm with R2= 0.9904 for Arsenate was the best graph for the experimental data. According to Langmuir isotherm model, the maximum amount of arsenate adsorption was 135.14mg/g. . The investigation of arsenate adsorption kinetics showed that arsenate adsorption follows the pseudo-second kinetics model.

Conclusion: This research showed that the adsorption process is depended on pH. With increasing pH, the ability of amine groups in chitosan are decreased to protonation, caused to decrease the efficiency of arsenate removal at high pH.


Mh Dehghani, B Akbarpour, M Salari, A Poursheykhani, H Rasoulzadeh,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Milk is a full meal that can provide an appropriate growing environment for different bacteria. Hence, it can be hazardous to human health in unpasteurized conditions. The present study was conducted in order to assess the prevalence and antimicrobial resistance of Staphylococcus aureus in raw and pasteurized milks of Sari City in the summer of 2014.

Materials and Methods: This cross-sectional study was conducted in the summer of 2014 in the city of Sari. Totally, 160 samples- each 200 mL of raw milk were collected from collection and distribution centers (80 samples) of raw milk, and pasteurized milk from food stores (80 samples). Under aseptic conditions, confirmatory tests were carried out in Chapman and Blood agar media. Antibiogram test was performed for positive samples. Results were analyzed using SPSS (Ver. 19) software through the t-test descriptive statistical analysis.

Results: The results showed that 38.75% of 80 samples of raw milk collected were contaminated by Staphylococcus aureus, while no contamination was observed in pasteurized milk samples. The average number of colony formation of raw milk was estimated to be within 3×104 to 7×104 Cfu/mL. Maximum sensitivity was found against vancomycin, gentamicin, and Co-trimoxazole antibiotics and the maximum resistance was observed  against ampicillin, methicillin and cephalotin antibiotics with of 87.5, 25, and 12.5%, respectively.

Conclusion: The raw milk showed the prevalence of Staphylococcus aureus. Therefore, compliance with and control of sanitation at different steps of preparation, supplying and consumption of milk can prevent the human infection with this type of contamination.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb