Search published articles


Showing 2 results for Bonyadi

R Shokuhi, A.h Mahvi, Z Bonyadi,
Volume 3, Issue 2 (6 2010)
Abstract

Backgrounds and Objectives: Cyanide is a species of high toxicity that found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Intrance of it to Existence enviroment contains very health hazardous. Purpose of this study, efficiency compare of both sonochemical and photosonochemical technologies for cyanide removal from aqueous solutions.
Materials and Methods: in this study, it has been used from a productive set of 500w power ultresound waves in of two frequencies 35 kHz and 130 kHz and a 125 W low pressure mercury lamp. Experiments were performed at initial cyanide concentrations varying from 2.5 to 75 mg/L. in this study, The effects of parameters such as pH, time and initial cyanide concentration on the sonochemical and photosonic degradation have been studied.
Results:The results of the study showed that the maximom removal efficiency of cyanide had been achieved sonochemical technology was 71% while it was 74% by photosonic at frequency of 130 kHz, at time of 90 min, pH of 11 and initial cyanide concentration of 2.5 mg/l.
Conclusion: The results of the study showed that efficiency of photosonic process is more than for sonochemical cyanide removal fromaqueous solutions.Also efficiency of cyanide removal has direct relationship with pH, frequeny and time ,and it has reverse relationship with cyanide concentration for both processes.


M.m Amin, B Jaberian, M Saadani, R Hadian, G.r Bonyadi Nejad, A Khodabakhshi,
Volume 3, Issue 2 (6 2010)
Abstract

Backgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC) efficiency in removal of Dissolved Organic Carbon (DOC) in water treatment in Isfahan.
Materials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP). These paths including: 1) Intake up to entrance of WTP 2) Intake to exit ofWTP 3) Between entrance and exit of waterworks. The paths were simulated by the Jar test system. Then DOC and UV254 absorption were analyzed and SUVA parameter for samples and activated-carbon adsorption isotherm was calculated.
Results: The injected PAC doses of 20,40,60,80 and 100 mg/l caused decreasing in DOC and UV254 absorption in every sample in all paths. The average of this decrease, from intake to WTP.s exit (second path) was the greatest 69.8± 3.9%and the commonWTP process had capability of removing 35% of DOC. The first path also showed that PAC can reduce 33± 2% DOC of raw water by itself. Activated-carbon absorption results were adhered from Freundlich adsorption isotherm.
Conclusion: In the third path therewas lessDOCremoval efficiency than exceptedwhen Activated- Carbon injected in rapid mixed basin with coagulant. Powdered activated carbon porosity reduction due to effect of coagulant can be the reason for this issue.Also according to different paths, the point of intake is more suitable for powdered activated carbon addition.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb