Search published articles


Showing 4 results for Chamani

Zohreh Nourouzi, Atefeh Chamani, Mozhgan Ahmadi Nadoushan,
Volume 16, Issue 1 (6-2023)
Abstract

Background and Objective: Particulate matter is an important air pollutant in urban areas with unknown effects on the fetus. The present study investigated the effect of PM2.5 concentration on the level of liver enzymes in the neonate born in Isfahan city, one of the most polluted cities in Iran was investigated.
Materials and Methods: This case study was conducted between March 2019 to September 2020 in Isfahan. Blood samples were collected from the umbilical cord of 200 newborns to measure the level of liver enzymes from their blood serum using quantitative diagnostic kits and the spectrophotometry method. Seasonal distribution of PM2.5 concentrations was estimated using the data of monitoring stations; thus, modeled and used to measure their correlations with liver enzyme levels at trimester in buffers of 500, 1000, and 2000 meters.
Results: The mean levels of liver enzymes were 38.42 (AST), 10.09 (ALT), 407 (ALP), and 152 (GGT) IU/L. Spring and fall with PM2.5 concentrations of 24.35 and 35.35 and μg/m3 had the lowest and highest levels, respectively. Enzyme levels within the third trimester and the whole period of pregnancy in the 2000-m buffers had the highest correlation coefficient, which indicates the effect of high PM2.5 concentrations on neonatal liver function, especially in late pregnancy.
Conclusion: Proximity to particulate matter sources in cities will increase the likelihood of elevated neonatal liver enzymes during the fetal period which is higher and more effective in late pregnancy.
 

Qasim Jalal Smian, Soheil Sobhanardakani, Atefeh Chamani,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: Nowadays, individuals spend a lot of time indoors; thus they are exposed to hazardous compounds including polycyclic aromatic hydrocarbons (PAHs) with teratogen, mutagen, and carcinogen potential. Therefore, this study was conducted to detect, and determine the content and source apportionment of PAHs in office building dust samples of Isfahan metropolis in 2023.
Materials and Methods: In this descriptive cross-sectional study, 84 indoor dust samples were collected from 28 sampling sites. After extraction of analytes, the gas chromatography/mass spectrometry (GC–MS) method was used to determine PAHs content in the samples. Molecular diagnostic ratios (MDRs) were used to determine the origin of PAH compounds. Furthermore, all statistical analyses were performed by SPSS software.
Results: The results showed that 16 priority PAHs were detected in the office building dust samples with the minimum, maximum, and mean values (µg/kg) of 4575, 16589, and 9838. Moreover, based on the results obtained, the mean contents of NAPH, FLU, PHE, FULA, PYR, BaA, CHR, BbF, BkF, BaP, DahA, BghiP, and IcdP species were higher than the maximum permissible concentration (MPC) established by Iran DOE. The results of the MDRs method indicated that although PAHs originated from both pyrogenic and petrogenic sources, the pyrogenic sources had the main role in the pollution of office building dusts with PAHs.
Conclusion: Due to risks arising from exposure to PAHs, detection, determination of contents, source identification, and especially health risk assessment of PAHs in indoor dust of other closed places such as commercial, educational, and recreational buildings as well as households is recommended.
 

Fatemeh Kakouei Dinaki, Mehrdad Cheraghi, Bahareh Lorestani, Soheil Sobhanardakani, Atefeh Chamani,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: Monitoring and remediation of metal contaminants in aquatic ecosystems is of particular importance to estimate, control, and reduce the level of threats to alive creatures and humans. Therefore, this study was conducted to evaluate metal contamination of surface sediments and the ability to monitor and bioremediation of iron, lead, and copper by aerial and underground tissues of Typha Latifolia and Nasturtium microphyllum located along the aquatic ecosystem of the Lar River, Tehran, Iran in 2021.
Materials and Methods: In this descriptive study, after selecting four sampling sites, 48 plant samples and 12 sediment samples were collected. After preparation and acid digestion of the samples in the laboratory, the contents of the elements were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Also, pollution index (PI), pollution load index (PLI), bioconcentration coefficient (BCF), bioaccumulation (BAF), and translocation factor (TF) were calculated. Statistical analyses of the results were performed using SPSS statistical software.
Results: The highest values of Fe, Pb, and Cu (mg/kg) in sediment samples were 11.8 ± 0.665, 0.915 ± 0.030, and 0.710 ± 0.026, respectively, and belonged to station 4; and in plant tissues 11.4 ± 1.25, 0.578 ± 0.180, and 0.298 ± 0.095, respectively, and were belonged to the roots of T. Latifolia. The PI values showed that the pollution of Fe, Pb, and Cu was "low" and the average PI values for the elements followed the descending order of Pb > Cu > Fe. The average values of PLI also vary from 0.003 to 0.006, indicating the quality conditions of "no pollution" in all the studied stations. On the other hand, T. Latifolia had a BCF > 1 and TF < 1 for Fe.
Conclusion: Based on the results obtained, it can be concluded that T. Latifolia is a suitable species for stabilizing Fe in sediments and could be used to monitor and remediate potentially toxic elements from polluted aquatic ecosystems.
 

Jawad Kadhim Noor, Atefeh Chamani, Ahmed Najm Abdallh Al-Mosawy, Narges Kargari,
Volume 17, Issue 3 (12-2024)
Abstract

Background and Objective: The pollution of trace elements in urban soil has attracted wide attention due to its detrimental environmental and health effects. Therefore, this research was conducted to evaluate of the content, pollution levels, and health risks associated with trace elements (Fe, Zn, Pb, Cd, Cu, Mn, and Mo) in the surface soil of Al-Qasim City in Babylon Governate in 2024.
Materials and Methods: This descriptive cross-sectional study involved, a total of 50 surface soil samples from a depth of 0-20 cm. The elemental content of the samples was determined using inductively coupled plasma optical spectroscopy (ICP-OES). Additionally,, the enrichment factor (EF), pollution index (PI), pollution load index (PLI), hazard index (HI), and carcinogenic risk (CR) were calculated. Statistical data analyses were done using SPSS software. 
Results: The average concentrations of Fe, Zn, Cd, Cu, Mn, and Mo in the soil were 27240, 62.7, 0.302, 33.8, 570 and 0.999 mg/kg, respectively. The highest average concentrations of Fe (30,331 mg/kg), Cu (37.3 mg/kg), Mn (639 mg/kg), and Mo (1.08 mg/kg) were found in downtown areasm whilefor the highest concentrations of Zn (65.3 mg/kg) and Cd (0.332 mg/kg) were observed in rural and midtown areas.
Conclusion: The results of this research demonstrate the impact of urban activities—such astraffic, industry, and agriculture—on the trace element pollution in the soil of Al-Qasim City. Therefore, regular monitoring of trace element concentrations and identification of their pollution sources are recommended to reduce and manage associated environmental and health risks.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb