Search published articles


Showing 30 results for Dehghan

Ar Mesdaghinia, F Vaezi, E Dehghanifard, Ah Mahvi, M Alimohammadi,
Volume 1, Issue 1 (26 2008)
Abstract

Background and Objectives: Measurement of light intensity is a recommended practice for insuring the delivery of required germicidal dose in disinfection operations by UV lamps. Use of sensitive to light chemicals which is the base of actionometeric methods could be considered as a suitable manner for estimating the intensity of UV lamp in circumstances that special radiometers are not available.
Materials and Methods: lodide-iodate mixture was used as an actinometer for this study. The light intensities of a UV lamp (LP 25W) were first determined by a special UVC ‌radiometer at certain distances from the lamp. Then the test of determining the suitable period of time for irradiation of actinometer was accomplished.  Finally، the color changes of iodide - iodate solutions at the predetermined distances were evaluated at the wavelength of 352 nm. The latter analysis can be done by a common (visible) spectrophotometer.
Results:‌ Results indicated that use of this actinometer is more suitable at the distances of 35 to 60 cm from the center of the lamp bulb، since iodode-iodate solution has a detectable color change at this range of distance in one minute irradiation which may be considered as a reasonable time for actionmeteric operations.
Conclusion:  Although all kinds of actinometers should not be regarded as precise as special radiometers and there would be need to use pure chemicals for actinometeric determination of light intensity، it can be claimed that the recommended procedure in this study which is the newest actinometeric method can be used in acceptable evaluation of UV intensity with least difficulty in providing necessary instruments.


M.h Dehghani, M Ghaderpoori, M Fazlzadeh, S Golmohamadi,
Volume 2, Issue 2 (16 2009)
Abstract

Backgrounds and Objectives:Safe drinking water providing is one of the main purposes in the community. Development and improvement of community is related to the public health. In this study !we studied the bacteriological quality of 116 villages under coverage of the water and wastewater companies in rural areas of Saqqez in.1386
Material and Methods:Drinking water of these rural areas have provided of deep, semi-depth- wells and spring water sources. Because in numerous rural areas both sources of drinking water and in some of them different sources of drinking water were used (old and new storage water source), in general, 359 samples were collected and transferred to the laboratory for testing to evaluate its quality. We also used linear Regression statistical analysis for collected data.
Results:results show that residual chlorine in drinking water in 33.88 percent of rural areas population were in range 0.2-1 mg/l. For 98.3 percent of the seqqez rural population, the turbidity was lower than the maximum permissible levels of drinking water standards of Iran (5 NTU). There was no any E.coli contamination in 88 percent of drinking water in saqqez rural areas.
Conclusion:Based on WHO guidelines concerning the microbial quality of water published in 2006! the average indicator for lack of E.coli in water of rural areas of seqqez was 88 percent and water is safe or good for drinking.


R Dehghanzadeh, H Aslani, B Afshar Forugh Shams, B Ghoraishi,
Volume 3, Issue 2 (6 2010)
Abstract

Backgrounds and Objectives: Shortage of available water resource and deficiency of rainfall, increasing in population growth and industrial development, suitable use of water resources and pollution prevention is an essential issue in accord with sustainable development and environmental protection. Present study shows the qualitative status ofMehran River and determines its pollution or non pollution tomunicipal wastewater and to assess qualitative characteristics of the water according to international water quality index.
Materials and Methods:Padding strand of MEHRAN River from source to end has been done for wistful determination of branches, runoff and wastewater entrances, etc. Necessary decisions were made for determining sampling points and critical and effective points on water quality then water samples were analyzed to determine chemical and microbiological characteristics.
Results: Results showed the average of BOD5, COD, TSS, NO3, DO, pH, Turbidity and color are about 80±30, 155±58, 1013±637, 7.3±2, 4.5±3.5 mg/l, 7.2 ±1, 385±238 NTU, 122±70 TCU respectively.
Conclusion: It could be concluded that the Mehran River is completely polluted with municipal sewage and is unsanitary.Water quality index varies in the range of 41-52 and the water is classified as number 4. At present the river is in a dangerous ore toxic state and could not be considered as drinking water resource or needs more advanced water treatment units.


M.h Dehghani, S Nasseri, M Ghaderpoori, A.h Mahvi, R Nabizadeh Nodehi,
Volume 3, Issue 4 (8 2011)
Abstract

Backgrounds and Objective: Surfactants are one of the largest pollutants which exist in urban and industrial wastewaters. Large quantities of surfactants have entered to the environment since last decade due to increased use of synthetic detergent in industrial and home consumptions.In this study, the efficiency of UV/H2O2 process in removal of linear alkylbenzane sulfonate (LAS) from aqueous solutions was investigated.
Materials and Methods: In this study methylene blue active substane(MBAS)method and spectrometery were used to determine anion and residual surfactant respectively. In this study important variables were H2O2 concentration, initial concentration of surfactant, pH and duration of UV radiation. The effect of UV/H2O2 process on the degradation of LAS was analyzed statistically by using Multiple Linear Regression test.
Results: The resulted showed that after 20 minute, ultraviolet radiation solely removed 38.44 percent of Anionic detergent, Hydrogen peroxide showed no significant removal of detergent solution in the time course study. The efficiency of UV/H2O2 process in 10, 20 and 30 minute were to 86.2, 90 and 96.5 %, respectively.
Conclusion: The results showed that the efficiency of ultraviolet radiation and hydrogen peroxide process in anionic detergent was not significant thoogh it was considerable in combination process (UV/H2O2).


M.h Dehghani, F Fazelinia, Gh.a Omrani, R Nabizadeh, K Azam,
Volume 4, Issue 1 (24 2011)
Abstract

Background and Objectives: Not paying attention to management and control of medical wastes in different stages of production, keeping, gathering, transporting and finally eliminating them all have been creating various setbacks such that the environment and human's health are in danger with the relevant consequences. This descriptive cross-sectional study was performed in Vali-e Asr, Amir Kabir, Taleghani, Amir Al-Momenin and Imam Khomeini hospitals of Arak city in 2009. In this research the current condition of gathering, maintaining, transportation and final elimination of hospital wastes of Arak city was investigated .Eventually an appropriate model was introduced.
Material and Methods: Solid wastes were separated, weighed and registered in two sequential intervals. In order to get acquaintance with the management procedure of medical solid wastes in the hospitals studied, a questionnaire approved byW.H.O was used. The questions were then replied by the Managers and Hygiene Experts worked at hospitals and their responses were recorded.
Results: The investigations conducted in 5 hospitals reveal that the average per annual was2.9 Kg in 24 hours per active bed and 4.6 Kg for each patient. This volume consists of 60% for semi-home solid wastes, 39% for infectious solid wastes, 0.34% for sharp wastes, 0.28% for the pathologic and 0.38% for medicinal and chemical solid wastes.
Conclusion: According to the results obtained in this study, in order to reduce pollution create in the hospitals, action should be taken to deal with pollutants at their source of generation. The staff members involved in waste collection and transportation should practice all the personal protection measures.finaly it also should be considered that,success in medical waste management wouldn't be achievable unless all groups of medical staff involved cooperate and participle.


A Taghipour, A.h Mahvi, F Vaezi, R Nabizade, R Dehghanzade,
Volume 4, Issue 1 (24 2011)
Abstract

Background and Objectives: Fresh leachate has a low pH and high amounts of BOD and COD which are mainly constituents with low weight molecular such as volatile fatty acids ( acetic and propionic acids) .Management and treatment of leachate is an important subject in sanitary landfill operation and performance.Th objective of this study is determining the efficiency of the integrated coagulation -flocculation and ozonation processes in fresh leachate treatment of Tabriz city.
Materials and Methods: Quantitive parameters of pH, BOD5, COD , alkalinity and TSS were studied based on standard methods.The study emphasizes of COD and TSS leachate removal.Alum , ferric chloride and PAC had been used as coagulants.
Results : Results indicated the superiority of Ferric chloride at the dosage of 1 g/l in pH 10 ,whichreduced 34% of COD and 54% of TSS.in the stage of ozonation the leachate sample coagulated by ferric chloride was treated by 3 g/h ozone gas at optimum pH and after 39 hours ozonation about 51% of COD and 18.2 % of TSS were reduced.
Conclusion: This study clearly indicates that there would be need to apply biological treatment (after coagulation - flocculation ) and ozonation , various advanced oxidation processes and / or other treatment methods for further reduction of COD in leachate and meeting discharge standards.


M Gholami, A Sabzali, E Dehghani Fard, R Mirzaei, D Motalebi,
Volume 4, Issue 3 (1 2011)
Abstract

Background and Objectives: One of the complete treatment processes for industrial and municipal wastewater treatment is membrane bioreactor process which has dominant potential in process and operation sections. This study was conducted to compare the performance of extended aeration activated sludge (EAAS) with submerged membrane bioreactor (SMBR) systems in the treatment of strength wastewater, in the same condition.
Materials and Methods: The initial activated sludge was brought from the Plascokar Saipa wastewater plant. The Plexiglas reactor with effective volume of 758 L was separated by a baffle into the aeration and secondary sedimentation parts with effective volumes of 433 L and 325 L, respectively. The chemical oxygen demand (COD) concentration of the influent wastewater of the EAAS and SMBR systems were between 500-2700 and 500-5000 mg/L, respectively.
Results: Results showed that the SMBR system produced a much better quality effluent than EAAS system in terms of COD, biochemical oxygen demand (BOD5), total suspended solids (TSS) and ammonium. By increasing the COD concentration, the concentration of mixed liquor suspended solids (MLSS) and the removal efficiency of organic matter in the SMBR system, were increased regularly, however the removal efficiency of COD in the EAAS system was irregular. 
Conclusion: The average BOD5/COD ratio of effluent in the EAAS and SMBR systems were 0.708±0.18 and 0.537±0.106, respectively. These show that the organic matters in the effluent of the SMBR system was less degradable and thereupon more biological treatment was achieved. Nitrification process was completely done in the SMBR system while the EAAS system could not achieve to complete nitrification.

 


P. Nassiri, M.r Monazzam, K Azam, N Hosseini Gousheh, S Farhang Dehghan,
Volume 4, Issue 4 (2 2012)
Abstract

Background and Objectives: Sound of motorcycles plays an important role in noise pollution in big cities. This is due to the lack of national law or standards to control the noise of domestic and also imported motorcycles. This study tries to introduce a practical limit value in different stage of motorcycle life cycle by assessing their noise pollution.
Materials and Methods: First the motorcycles noise standards at different countries were studied and they were compared with the results from noise level of 622 motorcycles in 3 different groups. The sample volume in each group corresponds to the amount of their annual production rate. Then using statistical tests, a limit was determined in which 90% of the domestic motorcycles can be covered. The limit is proposed as the standard for domestic motorcycle noise.
Results: The limit for motorcycles of groups 1, 2 and 3were 84, 86 and 87 dB (A) ,respectively in the TA stage. For the COP stage (Conformity of Production), the limit increases according to certain formula. In the end, a flowchart was proposed as a standard method for measuring the sound of motorcycles in the TA and COP stages was proposed.
Conclusion: Noise level of the domestic motorcycles is at least 9 dB (A) higher than the noise limit value of European motorcycle. If European limit value is considered for producing the national motorcycle, 90% of them will get out of production cycle and this would not be practical.


M.h Dehghani, A Zarei, A.h Mahvi, Gh.r Jahed Khaniki, E.b Kia,
Volume 4, Issue 4 (2 2012)
Abstract

Background and Objectives: Free living nematodes due to their active movement and resistance to chlorination don't remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. UV irradiation can be used as a method of inactivating these organisms.
Materials and Methods: This study is done to investigate the effect of ultraviolet lamp on inactivation of free living nematode (Rhabitidae) in water. The effects of duration of irradiation, turbidity, temperature, UV dose and pH are investigated in this study. Ultraviolet lamp used in this study was a 11 watt lamp with intensity of 24 µw / cm2.
Results: Contact time required to achieve 100% efficiency for larvae nematodes and adults were 9 and 10 minutes, respectively. Increase of turbidity up to 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64%, respectively. Change in pH ranged from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased.
Conclusion: The results showed that there was a significant correlation between the increase in contact time, temperature rise and turbidity reduction with inactivation efficiency of lamp)p<0.001(. Also the effect of the lamp on inactivation of larvae nematode was more than the adults.


Fahim Amini, Masoud Yunesian, Mohammad Hadi Dehghani, Nima Hosseni Jazani, Ramin Nabizadeh Nodehi, Maasoumeh Moghaddam Arjomandi,
Volume 5, Issue 1 (6 2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Nosocomial infection is the cause of deaths, morbidity, higher costs and increased length of stay in hospitals. Correct and appropriate use of antiseptic and disinfectants play an important role in reducing infections. In this study the efficacy of antiseptics on bacteria causing hospital infections has been studied.
Materials and Methods: This study was conducted in the laboratory of Imam Khomeini Hospital of Uremia. In this study the Antimicrobial activity of Descocid, Korsolex basic, Mikrobac forte and persidin 1% was studied against bacteria causing hospital infections such as Enterobacter aeruginosa 1221 (NCTC 10006), Staphylococcus epidermidis (PTCC: 1435 (Cip81.55) and Pseudomonas aeruginosa Strain PAO1. Sensitivities of bacteria were determined by Minimum inhibitory Concentration (MIC) and Minimum bactericidal Concentration (MBC) antiseptics. In the second stage, the concentration of antiseptics was prepared according to the manufacturer's suggested protocol and the effect of antimicrobial agents were studied at the certain concentration and contact time.
Result: All disinfectants (Descocid, Korsolex basic, Mikrobac forte) concentration and contact time, Accordance with the manufacturer's brochure, had inhibitory effect on all bacteria. That this is consistent with the manufacturer's brochure. Persidin one percent in concentration of from 2 and 4 V/V % and exposure time 5 minutes could not inhibit the growth of bacterial. But at concentrations of 10 and 20% respectively 15 and 30 minutes exposure time, all three types of bacteria can be inhibited, which is consistent with the manufacturer's claims.
Conclusion: In this study, the efficacy of antiseptics was determined with the Micro-dilution method recommended by the NCCLS. Korsolex basic, weakest antiseptics (the highest MIC) for the inhibition of three bacteria was determined. But Between all four antiseptics (according to manufacturer concentration), Only one percent Percidine 2 and 4 V/V %  in consumer dilution and 5 minutes exposure time failed to inhibit the growth of Pseudomonas aeruginosa, Staphylococcus epidermidis and Enterobacter aeruginosa.


Emad Dehghani Fard, Ahmad Jonidi Jafari, Roshanak Rezae Kalantari, Mitra Gholami, Ali Esrafili,
Volume 5, Issue 2 (13 2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Aniline has been used in different processes of chemical industries, however due to its side effects on the environment, several methods have been considered for its removal. In this study, we evaluated the performance of photocatalytic process using ZnO nanoparticles (nZnO) and ultraviolet (UV) irradiation for removal of Aniline from a synthetic effluent.
Materials and Methods: A 5L photocatalytic reactor made from Plexiglas, which the UV lamp (20w) installed in the center of that (inside a quartz jacket), was designed and nZnO (0.2-0.5 g/l) was being added into synthetic effluent with Aniline concentration of 250 ppm. After retention times of 30, 60, and 90 min, samples were centrifuged and supernatant was filtered using a 0.2 µ PTFE filter. The liquid-liquid method and Gas Chromatography instrument was used for extraction and analysis respectively.
Results: Results showed that the photocatalytic process of nZnO+UV could effectively remove Aniline from effluent. Increasing trend in the removal efficiency of Aniline using nZnO = 0.5 g/l was slower in comparison with other nZnO concentrations and the ANOVA analysis shows no significant difference between removal efficiency of Aniline in different concentrations of nZnO. The most removal efficiency of Aniline (76.3%) was observed in alkaline pH, retention time of 90 min and nZnO of 0.5 g/l.
Conclusion: It could be concluded that the photocatalytic process of nZnO+UV could be suitable technique for Aniline removal from effluents.


Hafez Golstanifar, Simin Nasseri, Amir Hossin Mahvi, Mohamad Hadi Dehghani, Anvar Asadi ,
Volume 5, Issue 4 (15 2013)
Abstract

Background and Objectives: The contamination of nitrate (NO3−) in groundwater resources causes two adverse health effects: induction of “blue-baby syndrome” (methemoglobinemia), especially in infants, and the potential formation of carcinogenic nitrosamines. The aim of this research is to investigate nitrate removal from groundwater using alumina nanoparticles and to determine the adsorption isotherms. Materials and Methods: This analytical-descriptive study was carried out at lab-scale, under batch conditions, and at room-temperature. The structure of alumina nanoparticles was determined using XRD, SEM, and TEM techniques. The concentration of nitrate in the solutions was determined by spectrophotometer at wavelengths of 220 and 275 nm. In addition, we investigated the impact of the important operational parameters including initial dose of Al2O3 (0.06-0.25 g/l), initial concentration of the solution (50- 300 mg/l), contact time (5-60 min), and pH (3-9). Moreover, we used Freundlich and Langmuir isotherm models to calculate equilibrium constant. Results: It was found that nitrate removal efficiency increased as we increased contact time, initial concentration and pH in batch system. A maximum of 60% nitrate removal was achieved under following conditions: 60 min contact time, pH 5, and initial nitrate concentration of 300 mg/l as N. The obtained results showed that the adsorption of nitrate by Nano-Gamma-Alumina follows Langmuir isotherm equation with a correlation coefficient equal to 0.982. Conclusion: Overall, our findings showed that the alumina nanoparticles can be used as an effective adsorbent to remove NO3 from aqueous solutions.
Elnaz Iravani, Mohammadhadi Dehghani, Amirhossein Mahvi, Noushin Rastkari,
Volume 6, Issue 2 (9-2013)
Abstract

Background and objectives: Bisphenol A (BPA) is an endocrine disrupting chemical that releases to the environment through effluents of its producing factory, pulp and paper mill factories, and plastics industry. The purpose of this study was to investigate adsorption isotherms of removing BPA from aqueous solutions using single walled carbon nanotubes (SWCNTs). Materials and methods: This study was an empirical investigation. Our experiments were conducted discontinuously using 50 mL of sample in each test. The variables of this study were the contact time (5, 15, 30, 60, 90, 120 min), the initial concentration of BPA (2, 5 , 20, 50 mg/L), and pH (3, 5, 6, 9, 11). The concentrations of BPA were measured using UV-Vis spectrophotometer. Results: The maximum adsorption capacity was found to be 71.42 mg/g. The results of our experiments showed that maximum adsorption capacity at equilibrium was achieved at t = 60 min and pH = 9. Moreover, increasing the initial concentration is associated with an increase in adsorption capacity until it becomes constant. Conclusion: The BPA adsorption on SWCNT follows Freundlich-Langmuir isotherm.
Aimohammad Baseri , Rohollah Dehghani , Alireza Soleimani , Omolbanin Hasanbeigi , Mehrangiz Pourgholi, Abdoreza Ahaki , Mohammadbagher Miranzadeh,
Volume 6, Issue 2 (9-2013)
Abstract

Background and Objectives: Kidney patients in each dialysis cycle are exposed to extremely large volume of water, which is in direct contact with the patient’s blood. Hence, the occurrence of any type of contamination in the water used can be very toxic to patients. Thus, quality of water plays an important role in patient well-being. The aim of our study was to investigate the quality of water used for hemodialysis in Kashan Akhavan hospital.
Materials and Methods: This cross-sectional descriptive study was conducted on water quality used for hemodialysis in Kashan Akhavan hospital during Oct.-Nov., 2011. During the study a total of 26 water samples were taken from the raw water and inlet of hemodialysis instrument. Collected water samples were analysed for Heterotrophic plate count, residual chlorine, pH , K+, SO42- , Na+, F- ,Ca2+ , mg2+ ,No3- , Hg+ , Cd2+, Cr6+, Zn2+, Cu2+, Se2+ ,Co2+,Ag +and As2+ according to the standard methods for water and wastewater examination.
Results: Our results showed that the concentration of copper, zinc, cadmium, lead, chromium, and silver were 0.4, 0.6, 0.07, 0.05, 0.08, and 0.04 µgL-1 respectively. In addition, concentration of the chemical elements and heavy metals did not exceed the standard level in any cases. Moreover, no microbial contamination was observed in the samples analyzed.
Conclusion: Based on the results obtained, all water quality parameters in hemodialysis ward of Kashan Akhavan Hospital were compatible with AAMI (Association for the Advancement of Medical Instrumentation) water quality Standards and no health risk threatens the kidney patients.


Mohamad Hadi Dehghani , Mamood Alimohammadi , Amir Hossein Mahvi, Noushin Rastkari, Masoome Mostofi, Maryam Gholami ,
Volume 6, Issue 4 (3-2014)
Abstract

Background and Objective: Various industries such as petrochemical, oil refinery, pharmaceutical, plastics, paper, steel and, resin produce a substantial of phenol and its derivatives. Wastewaters containing phenol need careful treatment before discharging into the environment due to their poor biodegradability and high toxicity. The objective of this study was to remove phenol by multiwall carbon nanotubes from aqueous solution. Materials and Methods: Adsorption process was implemented in a laboratory-scale batch with emphasis on the effect of various parameters such as contact time (5 to 120 minutes), pH (3- 11), initial concentration of phenol (5 - 50 mg/l) and the sulfate and chloride ions (20 - 200 mg/l) on adsorption process. To achieve a better realization of adsorption process, sorption kinetics and equilibrium isotherms were also determined. Results: The results indicated that maximum adsorption capacity occurred at concentration 50 mg/L and t =30 minutes. The uptake fluctuated very little in the pH range of 3–9, and at greater than 9 the absorption decreased suddenly. Moreover, the presence of sulfate and chloride ions had no effect on the process. It was found that adsorption kinetics and equilibrium data follow a pseudo-second-order kinetics model and a Freundlich isotherm model respectively. Conclusion: It is concluded that carbon nanotubes being effective in a wide range of pH, short time to reach equilibrium and the absence of competing ions on the absorption process can be used effectively in removing phenol from aqueous solution.


Gh Asgari, A. R. Rahmani, A. R. Dehghanian, A. R. Soltanian,
Volume 7, Issue 1 (7-2014)
Abstract

Background and Objectives: In this experimental study, we used Analytical Hierarchy Process method to determine the best wastewater treatment process for dairy products factories. That is a multi-criteria decision making techniques and is based on expert knowledge. Materials and Methods: First, we formed the hierarchical structure and defined the main criteria and indicators. Then, we investigated the current situation of the treatment process through field observations and conducting influent-effluent analysis. Later, we converted the results obtained into quantitative indices. Then we weighted the main criteria, and their related sub criteria, depending on existing conditions we performed the experiments required and considered the experts ideas. Finally, Evaluation and prioritization of the options was conducted using Expert choice software. Then the sensitivity analysis was performed for main criteria and we evaluated the influence of the parameters weight change on the options. Results: In comparison with the main criteria, environmental criteria were more important followed by engineering criteria, economic and management criteria. Conclusions: Due to the influence of various parameters in choosing optimal wastewater treatment, Multi-criteria decision-making methods are necessary. Finally, “UASB + Aeration” was found to be the first priority followed by “Anaerobic filter + Aeration”, “Anaerobic lagoon + Aeration (2) + Sedimentation (2)”,” Anaerobic filter + Aeration (2) + Sedimentation (2)”. “Septic tank + Trickling filter + Aeration” system was found to be less preferable than other options.


A Azhdarpoor Esfanabadi, P Mohammadi, M Dehghani,
Volume 7, Issue 4 (1-2015)
Abstract

Background & Objectives: Excessive discharge of hazardous materials such as nitrogenous and organic compounds into the environment has negative impacts on the health of the aquatic environment. The main objective of this research was focused on evaluating the feasibility of using modified SBR reactor for the removal of nitrogenous compounds and chemical oxygen demand (COD). Materials & Methods: The experiments were performed using an up-flow continuous reactor with intermittent effluent. At first, four different cycles including aeration, settling, and decant (3, 4, 6, and 8 h) were designed for the performance of the reactor. Then, the efficiency of each cycle was determined for different concentrations of COD (250-1500 mg/L) and ammonia (40-100 mg/L). Results: Data demonstrated that all cycles had very good performances for the removal of COD. The average COD removal efficiencies of phases 1 through 4 were 91.7, 91.5, 92, and 92.7% respectively. The average NH4+ removal efficiencies of phase 3 and 4 were 92.7 and 95.8% respectively. Conclusion: The performance of phase 4 (with the cycle of 8 h) for the removal of nitrogen compound and COD was particularly high. The combination of anoxic and aerobic cycles in the reactor and providing nitrate as an electron receptor had the best performance for the removal of nitrogen from wastewater. Therefore, the continuous up-flow reactor was a good alternative to batch reactor in removing nitrogen compound and COD simultaneously.


S Farhang Dehghan, B Maddah, F Golbabaei,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objectives: The goal of the present study was to develop nanofibrous media filters containing MgO nanoparticles for future application in removing particles from gas stream.

Materials and Methods: Electrospun nanofibers were fabricated using experimental design prepared by Response Surface Methodology. Optimization of electrospinning parameters was conducted for achieving the desired filter properties including fiber diameter, porosity, and bead number. After taking SEM images, the determination of fiber diameter and number of beads were performed through Image Analysis and the calculation of porosity percent was performed by MATLAB. A filter media was produced based on the optimized conditions of electrospinning and it was certified by the HEPA filter performance test.

Results: In terms of morphological quality of fibers including fiber uniformity, absence of branching and lower numbers of beads, experiment standard No. 2 (STD 2: concentration 16 wt%, voltage 10 kV, and distance 15 cm) had the best combination. Maximum fiber diameter was also observed in STD 2. Among the electrospinning, the highest correlation coefficient was observed between solution concentration and response variables and the relationship between concentration and both fiber diameter and porosity percent was statistically significant (p <0.05 and p <0.01, respectively). A weak positive correlation was found between fiber diameter and porosity percent (r=0.29, p>0.05) and a weak negative relationship was seen between fiber diameter and bead number (r=-0.2, p>0.05).

Conclusion: Solution concentration was found as the most affecting factor on the filter properties, so that the higher concentration leaded to the lower bead number and greater fiber diameter. Increase in fiber diameter resulted in larger pore size and higher porosity. Quadratic models were known for understudy variables. Efficiency of the optimized filter was comparable with the HEPA filter and it had the lower pressure drop.


Mh Dehghani, B Akbarpour, M Salari, A Poursheykhani, H Rasoulzadeh,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Milk is a full meal that can provide an appropriate growing environment for different bacteria. Hence, it can be hazardous to human health in unpasteurized conditions. The present study was conducted in order to assess the prevalence and antimicrobial resistance of Staphylococcus aureus in raw and pasteurized milks of Sari City in the summer of 2014.

Materials and Methods: This cross-sectional study was conducted in the summer of 2014 in the city of Sari. Totally, 160 samples- each 200 mL of raw milk were collected from collection and distribution centers (80 samples) of raw milk, and pasteurized milk from food stores (80 samples). Under aseptic conditions, confirmatory tests were carried out in Chapman and Blood agar media. Antibiogram test was performed for positive samples. Results were analyzed using SPSS (Ver. 19) software through the t-test descriptive statistical analysis.

Results: The results showed that 38.75% of 80 samples of raw milk collected were contaminated by Staphylococcus aureus, while no contamination was observed in pasteurized milk samples. The average number of colony formation of raw milk was estimated to be within 3×104 to 7×104 Cfu/mL. Maximum sensitivity was found against vancomycin, gentamicin, and Co-trimoxazole antibiotics and the maximum resistance was observed  against ampicillin, methicillin and cephalotin antibiotics with of 87.5, 25, and 12.5%, respectively.

Conclusion: The raw milk showed the prevalence of Staphylococcus aureus. Therefore, compliance with and control of sanitation at different steps of preparation, supplying and consumption of milk can prevent the human infection with this type of contamination.


V Past, K Yaghmaeian, R Nabizadeh Nodehi , Mh Dehghani, M Momeni, M Naderi,
Volume 10, Issue 2 (9-2017)
Abstract

Background and Objective: Environmental pollution due to dumping construction and demolition wastes has adverse effects on public health. This study aimed to select the best method for managing construction and demolition wastes disposal in Tehran by AHP.
Materials and Methods: This research was a descriptive study. The study population consisted of environmental health experts in the field of construction waste management. Initially, criteria and alternatives for construction waste management, recycling and reuse and landfilling were identified and classified. Using Analytical Hierarchy Process (AHP), different outcomes were compared based on scoring by Expert Choice 11 software.  
Results: The results of this study showed that the discharge percentage in the permanent landfills was 68%, in temporary pits was 9% and in recovery centers was 23% in the last 6 years. The final priority of criteria with respect to the economical criterion was reuse (0.492), recycling (0.274) and landfilling (0.235), respectively. Also, according to the environmental criterion, the scores for reuse, recycling and landfilling were 0.492, 0.373 and 0.198 respectively. Based on social criterion the calculated scores were 0.5, 0.279 and 0.222 for landfilling, recycling and reuse, respectively.
Conclusion: In this study, the reuse option with the weight of 0.439 was the best disposal option; and the recycling option with the weight of 0.312 was the second priority. Landfilling showed the lowest score with the weight of 0.250.
 

Page 1 from 2    
First
Previous
1
 

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb