Search published articles


Showing 1 results for Ebrahimzadeh Namvar

M Hadi, R Shokoohi, A.m Ebrahimzadeh Namvar, M Karimi, M Solaimany Aminabad,
Volume 4, Issue 1 (24 2011)
Abstract

Background and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gentamycin, Ceftizoxime, Nalidixic Acid, Ceftazidime, Ceftriaxon and Cefalexin were investigated in this study.
Materials and Methods: through a cross-sectional descriptive study the isolation of bacteria from hospital and urban wastewater samples was performed by microbiological identification techniques. The resistance to nine antibiotics was tested by application of the standard disc diffusion technique and zone-size interpretation chart of Kirby-Baeur. Non-parametric Mann-Whitney test was used to assessing two environments differences.
Results: The resistance percentage of E. coli to studied antibiotics was significantly less (ranged from 1.81 to 51.02%) than the resistance percentage of P. aeroginosa (ranged from 3.57 to 61.76) and K. pneumoniae (ranged from 6.45 to 91.83%). the highest resistance to antibiotics studied was for K. pneumonia in comparison with others. E. coli, K. pneumonia and P. aeroginosa bacteria showed the highest resistance to CAZ, SXT and CN, respectively. The study showed the resistance rate in hospital wastewater is more than urban wastewater.
Conclusion: Easy access and uncontrolled usage of antibiotics cause discharge of antibiotics to wastewaters and consequently diminish the drugs' effectiveness. High concentration of antibiotic and diversity in wastewater of hospital in comparison with urban wastewater causes to transfer resistant agents between bacteria and increased the multiple resistances.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb