Search published articles


Showing 30 results for Farzadkia

M Farzadkia, R Rezaee Kalantari, S Jorfi, A.r Talaee, G.r Moussavi,
Volume 2, Issue 1 (16 2009)
Abstract

Background and Objectives : Propylene glycol is the main compound of anti-freezing chemicals. A significant amount of propylene glycol is released to the environment after application and contaminates the soil. The main objective of this study was to determine the biological removal of propylene glycol from wastewater and its degradation in soil by the isolated bacteria from activated sludge process.
Materials and Methods: In the present study, the sludge taken from the return flow in a local activated sludge treatment system was used as the initial seed. The performance of the bioreactor in treating the wastewater was evaluated at four different retention times of 18, 12, 6 and 4 h all with the inlet COD concentration of 1000 mg/L. This phase lasted around 4 months. Then, a part of the adapted microorganisms were transported from the bioreactor to the soil which was synthetically contaminated to the propylene glycol.
Results: The average of propylene glycol removal efficiency from the wastewater in detention times of 18, 12, 8 and 4 h in steady state conditions was 98.6%, 97.1%, 86.4% and 62.2% respectively. Also, the maximum degradation in soil was found to be 97.8%.
Conclusion: According to the results obtained from this study, it appears that propylene glycol is inherently well biodegradable and can be biodegraded in liquid phase and soil after a short period of adaptation.


F Rashid Ashmagh, R Rezaei Kalantary, M Farzadkia, A Joneidy Jafari, R Nabizadeh,
Volume 2, Issue 3 (25 2009)
Abstract

Backgrounds and Objectives: Polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous pollutants which have carcinogenic and mutagenic properties and accumulated in environment by different actions, therefore treatment of them is important. Biological treatments are simple and cheep technologies. This technology was recommended as a cost- effective method for treatment of these pollutants. In order to investigate the trend of pollution reduction of petroleum hydrocarbons in bioremediation, the phenanthrene biodegradation&aposs model in contaminated soils was studied.
Materials and Methods: Firstly, PAHs capable degrading bacteria was isolated from petroleum contaminated soils and then their ability for biodegradation of phenanthrene was assessed in slurry phase. After that by using Acinetobacter which have the most potential of removing phenanthrene from soil, the biodegradation model was investigated in bench scale.
Results: Phenantherene removal efficiency was obtained 99.4% for 100 mg/kg and 96 % for 500 mg/kg concentrations in 33 and 60 days biodegradation period respectively. Phenantherene reduction rate varied from 2.99 to 8.86 and 1.4 to 11.09 mg/kg/day for 100 and 500 mg/kg concentrations, respectively.
Conclusion: Rate of phenantherene removal is depended on primary concentration of contamination and by increasing of primary concentration, phenantherene removal rate was increased. Also removal efficiency followed zero and first order kinetic model with good correlation.


M Farzadkia, S Salehi, A Aameri, A Joneidy Jafari, R Nabizadeh,
Volume 2, Issue 3 (25 2009)
Abstract

Backgrounds  and Objectives:  Over than 70% of solid wastes is consisted of food wastes with high putrecibility in Iran.  Due to this regard, construction of composting factories for sanitary disposal or fertilizer production from solid wastes was very appreciated in our country. The objective of this research was to study on the quality and comparing of the compost produced by Khomain and Tehran compost factories.
Materials and Methods: This study was accomplished on the compost produce from Khomain and Tehran compost factories about 9 months. For investigation of chemical qualities of these materials, some indexes such as percentage of organic materials, carbon, nitrogen, phosphorus, potash and heavy metals consists of lead, cadmium, mercury and chromium were measured. Microbial quality of these compost materials were defined by assessing of the amounts of coliforms bacteria, salmonella bacteria and parasites ova.
Results: The average amounts of some indexes in compost of Khomain and Tehran were been: organic materials % (37.77, 29.80), carbon %( 22.14, 18.12), nitrogen% (2.08, 1.6), lead (229.6, 59.44 ppm), and chromium (70.2, 19.75), respectively. The microbial quality of these compost samples were agreement with class B of USEPA guidelines.
Conclusion: This study showed that quality of organic materials percent in Tehran's samples was better than Khomain's samples, but these indexes on these samples were lower than the grade No.2 of compost. The percentage of carbon, nitrogen and potash in these samples were desirable but, phosphorus amount were not in sufficient. The heavy metals especially lead and chromium in Tehran's samples were higher than Khomain's samples, but these samples were usually in agreement with guidelines of compost. Due to the defined microbial qualities, these samples could be used as well as amendment agents for poor soil.


M. A Karami, M Farzadkia, A Jonidi Jaafari, R Nabizade, M. R Gohari, M Karimaee,
Volume 4, Issue 4 (2 2012)
Abstract

Background and Objectives:  In recent years, poor industrial waste managements have created many crises in human societies. The aim of this study was to investigate industrial waste management located between Tehran and Karaj zone in 2009-2010.
Materials and Methods: This study is descriptive and sectional which was done by site visits, (Iranian environmental protection organization)  use of questionnaires, database production and results analysis. The questionnaire consisted of 45 questions mainly about industrial waste quantity, quality and management. Total number of industries with over 50 personnel's, calculated as 283. Class-weighted sampling was used in which the sample size contained 50 industries.
Results: Total generated industrial waste was 123451, kg per day. Major hazardous waste generated in industrial  sections included: chemical and plastic making. About 45.28% of waste generated disposed by private sectors. Landfill with 62% and reuse with 17% were the first and second alternative of common methods for final disposal of solid waste in this zone.
Conclusion: In order to reduce hazardous waste generation in this zone, reuse and recovery maximization of the waste must be noted in short-term. In long-term, some industries such as chemical-plastic and electronics which have high rate of hazardous waste production must be replaced with other industries with low rate production, such as wood-cellulose and paper industries.


Majid Kermani, Mitra Gholami, Abdolmajid Gholizade, Mahdi Farzadkia, Ali Esrafili,
Volume 5, Issue 1 (6 2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Phenols in trace quantities are usually present in the treated effluent of many wastewater-treatment plants. Phenol compounds even at low concentration can cause toxicity, health and significant taste and odor problem in drinking waters. This research focuses on understanding the sorption process and developing a cost-effective technology for the treatment of water contaminated with phenolic compounds, which are discharged into the aquatic environment from a variety of sources. In order to remove phenolic compounds from water, a new natural sorbent, rice husk ash, was developed.
Materials and Methods: Removal of phenol, 2-chlorophenol and 4-chlorophenol were characterized by spectrophotometric technique at wavelengths of 269.5, 274 and 280 nm, respectively, under batch equilibrium conditions and via changing the parameters of contact time, initial pH, and initial concentration of adsorbates and dosages of sorbent. Finally, the results were analyzed by the kinetic and isotherm models.
Results: in this study, the equilibrium time was found to be 240 min for full equilibration of adsorbates. Removal percent of 2-chlorophenol was lower than two others. The maximum removal of phenol, 2-CP and 4-CP was observed at an initial pH of 5. The percentage removal of these phenolic compounds increased with increasing adsorbent dose and decreasing initial concentration. In kinetics studies, correlation coefficient and ARE factor showed that the sorption of phenol (R2=0.9999), 2-chlorophenol (R2=0.9992) and 4-chlorophenol (R2=1) fitted by pseudo second order model. Isotherm studies also revealed that, Langmuirmodel for phenol (R2=0.9499), Freundlich model for 2-chlorophenol (R2=0.9659) and 4-chlorophenol (R2=0.9542) were the best choices to describe the sorption behaviors.
Conclusion: Sorption process is highly dependent on the pH and it affects adsorbent surface characteristics, the degree of ionization and removal efficiency. At high pH hydroxide ions (OH-) compete for adsorption sites with phenol molecules. The sorption was done rapidly and a plateau  was reached indicating the sorption sites occuupied till  they were saturated. Since the increasing sorbent dose would improve sorption site, its increasing enhances phenolic compounds removal.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Edris Bazrafshan, Ferdos Kord Mostafapour, Mahdi Farzadkia, Kamaledin Ownagh, Hossein Jaafari Mansurian,
Volume 5, Issue 3 (21 2012)
Abstract

Background and Objectives: Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat, and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards.
Materials and Methods: At present study, slaughterhouse wastewater after initial analysis was tested for survey of coagulation process using Poly aluminum chloride (PAC) at various doses (25-100 mg/L). Then we measured the concentrations of wastewater pollutants (BOD5, COD, TKN, TSS and fecal Coliforms). Later, we transferred the effluent to the electrocoagulation unit and we evaluated the removal efficiency of pollutants in the range 10 to 40 volts of electric potential during 60 min.
Results: It was found that the efficiency of chemical coagulation process using poly-aluminum chloride (PAC) as coagulant increases with increasing doses (from 25 to 100 mg/L) we achieved maximum removal efficiency during the chemical coagulation for parameters of BOD5, COD, TSS, and TKN at 100 mg/L of PAC equivalent to 44.78%, 58.52%, 59.9%, and 39.58% respectively. Moreover, the results showed that with increasing the electric potential and reaction time, the yield increases linearly so that maximum removal efficiency at a dose of 100 mg/L PAC, an electrical potential of 40 volts and a reaction time of 60 minutes for the parameters BOD5, COD, TSS, and TKN was 99.18% 99.25%, 82.55%, and 93.97% respectively.
Conclusion: The experiments demonstrated the effectiveness of combined chemical coagulation and electrocoagulation processes for pollutants removal from the slaughterhouse wastewaters. Consequently, this combined process can produce effluent compliance with the effluent discharge standards.


Maasoumeh Ravanipour, Roshanak Rezaei Kalantary, Mahdi Farzadkia, Samireh Hashemi-Najafabadi, Ali Esrafily,
Volume 5, Issue 4 (15 2013)
Abstract

MicrosoftInternetExplorer4 Background and Objectives:The poor accessibility of microorganisms to PAHs in soil has limited success in the process of bioremediation as an effective method for removing pollutants from soils. Different physicochemical factors are effective on the rate of biodegradation. The main objective of this study is to assess effects of nutrient and salinity on phenanthrene removal from polluted soils.
Materials and Methods:The soil having no organic and microbial pollution was first artificially polluted with phenanthrene then nutrients and salinity solution in two concentrations were added to it in order to have the proportion of 10% w:v (soil: water). After that a microbial mixture enable to degrade phenanthrene was added to the slurry and was aerated. Finally, the residual concentration of Phenanthrene in the soil was extracted by ultrasonic and was analyzed using GC. We measured the microbial populationusing MPN test. This study was conducted based on the two level full factorial design of experiment.
Results: MPN test showed that the trend of microbial growth has experienced a lag growth. The full factorial design indicated that nutrient had the maximum effect on bioremediation the rate of phenanthrene removal in the maximum nutrients - minimum salinity solution was 75.14%.
Conclusion: This study revealed that the more nutrient concentration increases, the more degradation will be happened by microorganisms in the soils. However, salinity in the concentration used had no effect on inhabitation or promoting on the Phenanthrene removal.


َahmad Joneidi Jafari, Ayooob Rastegar, Mahdi Farzadkia, Roshanak Rezaee Kalantary, Zahra Rezaee Gozalabad,
Volume 6, Issue 4 (3-2014)
Abstract

Background and Objective:Application of compost containing heavy metals can increase the concentration of metals in soil and groundwater. Therefore,the aim of this study was to investigate leaching lead, chromium,and cadmium from three soils (a sandy loam, a sandy clay loam and silt clay loam) amended with compost from the municipal solid waste. Material andMethod:First, the selected soils were repacked into columns (with an inner diameter of 100mm and a height of 600mm). Treatments included(a) low metal content compost (LMCC), (b) enriched metal content compost (EMCC) and (c) control. Then soil columns were incubated at room temperature for 9 days and were irrigated daily with deionized water to make a total of a 250 mm. Leachates were collected and analyzed for pH, EC, Pb, Cr, and Cd concentration. Results: It was found that the application ofEMCCwas significant (p≤0/05) on reducing pH, increasing electrical conductivity and leakage of metalscompared withcontrolin all three soils. But application of LMCC was not significant (p≥0/05) on the metals leaching compared withcontrolin all three soils. The overall quantities of metals leached followed the sandy loam> sandy clay loam> silt clay loam. Conclusion: The concentration of metals in the leachates depended on the soil characteristics and on the type of compost added to the soil. Therefore,application of enriched metal content compost on the soils containinga high percentage ofsandmay pose a risk in terms of groundwater contamination with heavy metals.


Leila Karimi Takanlu, Mahdi Farzadkia, Amir Hossein Mahvi, Ali Esrafily, Masoumeh Golshan,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Cadmium can enter water resources through the industrial wastewater. It could cause intensivly damages to the liver and kidney of humans. Magnetic iron nanoparticles are used to control and eliminate heavy metals from industrial effluents through the mechanisms of adsorption, ion exchange and electrostatic forces. The aim of this study was to evaluate the efficiency of magnetic nanoparticles for adsorption of cadmium. Methods: The magnetite nanoparticles were prepared by co-precipitation method through the addition of bivalent and trivalent iron chloride under alkaline conditions. Characteristics of nanoparticles including particles structure, composition and size were determined using analytical devices such as XRD, SEM, and FT-IR. For optimization of adsorption process of cadmium, some parameters such as pH, contact time, initial concentration of cadmium, nanoparticles concentration, and temperature were studied under different conditions. Results: It was found that 95% of cadmium could be removedAt pH &ge 5.6, 10 mg/L initial cadmium concentration, a dose of 1 mg synthesized magnetite nanoparticles, 10 minutes contact time, and 200 rpm mixing rate at 25 °C. The isotherm of adsorption follows the Langmuir model (R2 < 0.995). Maximum capacity of cadmium adsorption was found to be 20.41 mg/g. Conclusion: Magnetite nanoparticles exhibit high capability for removal of cadmium. The nanoparticles synthesized could be used at industrial scale because of having the magnetic property, which make them easily recovered from aqueous solution through applying a magnetic field.


Masoumeh Golshan, Simin Nasseri, Mahdi Farzadkia, Ali Esrafili, Roshanak Rezaei Kalantary, Leila Karimi Takanlu,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: The use of surfactants enhance the bioavailability of nonbiodegradable contaminants such as PAHs. Biosurfactants are more environmental friendly. In this study the ability of removing phenenthrene from soil by biosurfactant was assessed and compared with that of chemical surfactant. Materials and Methods: A soil sample free of any organic or microbial contamination was artificially spiked with phenanthrene at two concentrations. Then, mineral salt medium at constant concentration of chemical surfactant TritonX-100 and rhamnolipid MR01biosurfactant was added to it in order to have the proportion of 10% w:v (soil:water). A microbial consortium with a potential of phenanthrene biodegradation was inoculated to the soil slurry in two densities (OD=1 and 2) and then it was aerated on a shaker. After eight weeks, the residual concentration of phenanthrene in the soil was extracted by ultrasonic and was analyzed using HPLC. MPN test was used for measuring microbial population. This study was conducted based on the two level full factorial design of experiment. Results: It was found that chemical surfactant exhibited higher PHE removal efficiency than the biosurfactant. Using 120 mg/L of TritonX-100 and rhamnolipid, the PHE removal for the soil contaminated with 50 mg PHE/kg dry soil was 98.5 and 88.7% respectively, while the removal efficieny was decreased to 87 and 76% respectively for the soil contaminated with 300 mg PHE/kg. In the absence of surfactant, the removal efficiency at concentrations of 50 and 300 mg PHE/kg dry soil was achieved 60.76 and 51% respectively. The phenanthrene removal efficiency in OD=2 was more higher than OD=1. In the presence of rhamnolipid, the maximum microbial populations was observed in the second week, while it decreased in the presence of TritonX-100. Conclusion: Use of biosurfactants can be considered as a suitable option in low level pollutant sites. Chemical surfactants as ex-situ has achieved more satisfactory results in high level contaminant sites.


Z Akbari Jonoush, M Farzadkia, S Naseri, H.r Mohajerani, A Esrafili Dizaji, Y Dadban Shahamat,
Volume 7, Issue 4 (1-2015)
Abstract

Background and Objectives: Increased growing nuclear industry has increased the researchers concerns on uranium presence in the environment and its effects on human health. Uranium is a dangerous radioactive heavy metal with high half-life and chemical toxicity. Therefore, the main objective of this study was to removal uranium (VI) from aqueous solution by uranium benzamide complex using AC_Fe3O4 nanocomposite. Materials and Methods: AC_Fe3O4 nanocomposite was synthesized using co-precipitation method. The experiments were designed as one factor at the time method. The optimum range of pH, contact time, amounts of adsorbent, and concentration of benzamide were determined. Then, kinetic and isotherm of uranium adsorption were studied. In addition, the properties of this adsorbent were characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). Results: The SEM and FTIR analysis confirmed that activated carbon is coated with Fe3O4 nanoparticles and the magnetic property of AC-Fe2O3 was approved. According to the results, the optimum conditions were pH =6, contact time =30 min, and 0.06 g of adsorbent dose. The adsorption of uranium on the AC_Fe3O4 nanocomposite fitted to Langmuir isotherm and pseudo-second order kinetic model. The removal of U(VI) was increased about 6% with increasing in benzamide concentration to 50 mg/L. The best percentage removal of uranium in aqueous solution was 95%. Conclusion: The removal of U(VI) on AC_Fe3O4 nanocomposite with the aid of benzamide is a rapid and highly pH depended process. The maximum sorption capacity (15/87 mg/g) of AC_Fe3O4 nanocomposite shows that this method is a suitable method for Uranium removal.


Y Dadban Shahamat, M Farzadkia, S Nasseri, A.h Mahvi, M Gholami, A Esrafily,
Volume 8, Issue 3 (12-2015)
Abstract

Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters.

Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewater was investigated. To determine the acute toxicity of effluents and identification of intermediate compounds produced in COP, bioassay using Daphnia Magna and GC / MS were used, respectively. Then, phenol and COD removal of pretreated wastewater was investigated in SBR.

Results: It was found that under optimal conditions in COP (time = 60 min), the concentrations of phenol and COD reduced from 500 and 1162 to 7.5 and 351 mg/L respectively and pretreated effluent toxicity (TU = 36), after rising in the initial stage of reaction, effectively reduced at the end of process (TU=2.3). the integration of this process with SBR could decreased the COD and phenol concentration less than the detectable range by HPLC. 

Conclusion: Results showed that COP has a high effect on biodegradability, detoxification, and mineralization of phenol and combination of COP with SBR process can effectively treat wastewaters containing phenol.


M Kermani, M Farzadkia, A Esrafili, Y Dadban Shahamat, S Fallah Jokandan,
Volume 10, Issue 2 (9-2017)
Abstract

Background and Objective: Discharge of industrial wastewater containing Catechol has adverse effects on human and environmental health. Purpose of this study was to determine the effects of catechol toxicity before and after advanced oxidation process (ozonation process) by bioassay test with Daphnia Magna.
Materials and Methods:  This study is an applied research in which the toxicity of catechol was determined by Daphnia Magna bioassay test during the ozonation process. First, Catechol stock solution was prepared at a concentration of 250 mg/L. Then, 10 samples were prepared that each contained 0 (control), 0.5, 1, 3, 6, 12, 25, 50, 75 and 100% of volume of primary solution. Initial samples were prepared from reactor effluent in the same volume as those of the samples. According to standard method, 10 Daphnia infants were added to each sample. The samples were observed after 24, 48, 72 and 96 hours. Finally, lethal concentration (LC50) and toxicity unit (TU) were calculated using Probit analysis.
Results: According to the results, Daphnia magna was affected by the toxicity of catechol. LC50 (24-hour) for raw effluent was increased from 13.30 mL/100 mL to 30.4 mL/100 mL after 60 minutes Treatment. The toxicity unit was decreased from 7.51 TU to 3.29 TU accordingly, showing reduction of 56% in toxicity. The toxicity of the treated effluent decreased during ozonation process of catechol.
Conclusion: Based on the bioassay test, ozonation process was able to reduce the toxicity of catechol. Therefore, this process can be used as an option to treat wastewater that contains catechol.
 
R Barati Rashvanlou, M Farzadkia,
Volume 11, Issue 1 (6-2018)
Abstract

Background and Objective: Ultrasonic disintegration is a pretreatment process before stabilization and dewatering that degrades sludge and changes its physical and chemical characteristics. The aim of this study was to investigate the effectiveness of ultrasonic in enhancing hydrolyses, stabilization and dewatering of municipal raw activated sludge.
Materials and Methods:  The samples were taken from returned activated sludge and then they were exposed to ultrasonic (Frequency: 20 and 40 kHz) in different times (0.5, 1, 3, 5, 10, 15, 30, and 60 min). The effectiveness of ultrasonic for hydrolysis, stabilization and dewatering processes were determined with measuring TS, TSS, CST, SRF, VS, nVS, VSss, and VSsol.
Results: VSsol was increased by 73% in 15 min and at frequency of 20 kHz, whereas VSsol increas was100% at 10 min and 40 kHz. The reduction of VS was observed at 15 min and 20 kHz. Then after, it was reached 18% after 60 min. For 40 kHz, VS reduction started at 10 min and reached 24% after 60 min. Specific resistance of sludge at two frequencies of 20 and 40 kHz and contact time of 1 min were decreased by 25 and 20% respectively. The capillary suction time at the frequencies of 20 and 40 kHz and contact time of 1 min was decreased 28 and 21%, respectively.
Conclusion: The optimum effectiveness of ultrasonic in hydrolysis of organic matter of raw biological sludge was at the contact time of 10 min and frequency of 40 kHz. The highest stabilization at the frequency of 40 kHz was observed at 60 min contact time. The best condition for sludge dewatering was at frequency of 20 kHz and contact time of 1 min.
 

A Jonidi Jafari, M Farzadkia, M Gholami, M Mohagheghi,
Volume 11, Issue 2 (9-2018)
Abstract

Background and Objective: Nowadays, the increasing use of antibiotics to control diseases and mismanagement and inappropriate disposal of medicinal wastes cause environmental problems and threatens human health. The present study was conducted to determine removal of antibiotic Metronidazole as one of the most used drugs during the process of composting.
Materials and Methods: In this experimental study, a mixture of livestock manure, fruit, straw and sludge were used for the preparation of compost. Duration of the process was 40 days. Metronidazole was added to the compost reactors at three concentrations of 20, 50 and 100 mg/kg. Totally, 42 Samples were taken weekly. HPLC was used to analyze the samples. The experiment was repeated twice. SPSS22 software was used to analyze the results.
Results: The rate of Metronidazole removal after day 21 and end of the thermophilic phase was 99.9, 96.73 and 93.48 % in the reactors contained 20, 50 and 100 mg/kg, respectively. Increasing concentrations in the reactors caused the removal rate to decrease, while increasing removal time caused to increase the removal rate. At the end of the process, the removal rate for all three reactors was 99.99 %. The physico-chemical properties of the final compost were within the national standard.
Conclusion: The use of an aerobic composting process to degrade antibiotic Metronidazole is an economical, effective and, environmentally friendly method. At the end of the process, 99.99 % of Metronidazole was degraded.
 

M Ansari, T Dehdari, M Farzadkia,
Volume 11, Issue 3 (12-2018)
Abstract

Background and Objective: A scientific questionnaire for assessing the knowledge, attitude and judgment of people on waste management by municipalities has not been developed so far. Therefore, the purpose of this study was to design and validation of an instrument to assess the knowledge, attitude and judgment of people on waste management by municipalities.
Materials and Methods: This analytical study was conducted in District 21 of Tehran in 2017. The initial items of the questionnaire were designed based on previous studies and opinions of the team of specialists and people. Then, the face validity and the content validity of the designed questionnaire was examined. The face validity and the content validity was examined qualitatively and quantitatively, respectively. Finally, the reliability of the attitude and knowledge and evaluation of municipal performance items were measured by Cronbach's alpha and a test-retest method, respectively.
Results: The initial questionnaire had 43 items. In the face validity, 8 items were removed and 8 items were edited. In quantitative content validity, 7 items were excluded, with the content validity index of less than 0.79 and the content validity ratio less than 0.49. Pearson correlation coefficient obtained for knowledge component equal to (r=0.77, p<0.0001) and for component performance (r=0.93, p<0.0001), respectively. Cronbach's alpha coefficient was equal to 0.89 for items attitudes, which were in an acceptable level.
Conclusion: The questionnaire can be used as a valid research instrument to collect information on knowledge, attitude and judgment of people on waste management by municipalities.
 

M Ansari, M Fahiminia, M Farzadkia,
Volume 11, Issue 4 (3-2019)
Abstract

Background and Objective: Rural wastewater management is recognized as one of the pillars of sustainable development. Therefore, the purpose of this study was to assess needs and prioritization of establishment of rural wastewater management facilities in order to supply a safe and alternative water source in the provinces of Iran experiencing severe water stress.
Materials and Methods: This is a cross-sectional descriptive study which was carried out in rural areas of the provinces with severe water stress (South Khorasan, Khorasan Razavi, Fars, Isfahan, Yazd, Semnan, Qom, Sistan and Baluchistan) in 2017-2018. In this study, the number of sample rural areas was calculated by Cochran method and the determination of the sample rural area was done by stratified sampling. The data related to the sample rural area was collected using a validated constructor questionnaire.
Results: The results of this study showed that the difference among all the studied provinces in terms of their priority in establishing rural waste water management facilities to provide a safe and alternative water source was very low. The provinces of Isfahan, Semnan and Fars were rated at 76 out of 100, while the provinces of South Khorasan and Sistan and Baluchestan scored 71 points.
Conclusion: With emphasis on comprehensive decision making criteria based on sustainable development, the results of this study showed that the provinces with severe water stress have a high priority regarding the establishment of rural sewage management projects in order to provide a safe and alternative water sources.
 

H Nik Nejad, H Pasalari, M Yegane Badi, J Abolghasemi, R Ghasem Nejad, M Farzadkia,
Volume 12, Issue 1 (5-2019)
Abstract

Background and Objective: Clinics, laboratories and health care centers are considered as one of the main waste generating sources in solid waste management. The problems associated with the generated health-care waste in clinics, laboratories and health care centers have been rarely investigated in Iran. Therefore, the present study was developed to investigate the status of health care waste in clinics, laboratories and health care centers of Mahmoudabad, Mazandaran in 2017.
Methods and Materials: This cross-sectional study was conducted to determine the status of solid waste management in 117 medical centers in Mahmoudabad, Mazandaran, 2017. The solid waste data in terms of waste generation rate, storage, collection, and disposal were surveyed through interview and questionnaire that were validated by Iran’s ministry of health.
Results: The average health-care waste generation in medical centers in Mahmoudabad was found to be 248 g/day. The mean and standard deviation for environmental health criteria in all medical centers were 248.3 and 41.1, respectively. In addition, there was a statistically significant difference between the amount of waste generation in private and governmental medical centers (p=0.111).
Conclusion: The results obtained from the present research indicated that the medical waste management in Mahmoudabad, particularly in private centers, face serious problems. Improper waste collection technology, mixing municipal and medical waste, requirement for training the personnel in medical waste management and surveillance can be considered as important concerns in health-care waste management in Mahmoudabad.
 

J Gorgani, R Nabizadeh, M Gholami, H Pasalari, M Yegane Badi, M Farzadkia, Ha Asgharnia, Ma Zazouli,
Volume 12, Issue 3 (12-2019)
Abstract

Background and Objective: Hospital wastes with the content of infectious, pathologic, sharp, pharmaceupitical and genotoxic materials are classified as hazardous wastes. Of which, genotoxic residues wirh mutagenic and teratogenic effects are of most great concern on human health. Genetic wastes are referred to as cytotoxic, chemical, and radioactive drugs used to treat cancer or treat transplantation. The purpose of this study was to evaluate the management of hospital wastes in Mazandaran province with emphasis on genotoxic waste.
Materials and Methods: This descriptive cross-sectional study was carried out in 35 governmental and social hospitals in Mazandaran province to determine the satus of hospital waste with focus on geotoxic waste. The quanity, quality and management approaches of hospital and genotoxic wastes in the studied hospitals were surveyed with a validated questionnaire. Results obtained from the present study were analyzed with Excel software.
Results: The average waste per each hospital bed was estimated to be 3.51 kilograms. Of which, 2.2, 1.24, 1.9 kg were categorized as municipal, chemical, and genotoxic wastes, respectively. The average of the hospital waste management index in Mazandaran province was found to be about 84 out of 100, indicating good management of these wastes. The management of genotoxic waste in 7 specialized chemotherapy hospitals was estimated to be 64 out of 100, indicating the average state of genotoxic waste management for these hospitals. In 28 non-chemotherapy hospitals, the genotoxic waste management index was approximated 42 out of 100, indicating poor management of these wastes.
Conclusion: The main weaknesses in hospital waste management are associated with the management of chemical-pharmaceutical and genotoxic wastes. Accordingly, improvement the quality of genotoxic and chemical-pharmaceutical wastes should be concerned in the future planning.
 

H Niknejad, M Farzadkia, A Esrafili, M Kermani,
Volume 12, Issue 4 (2-2020)
Abstract

Background and Objective: 2,4 dinitrophenol is observed in sewage produced from chemical and petrochemical industries. Contamination of drinking water with these pollutants causes toxicity, health problems and change in taste and odor. The present study was developed to evaluate the efficiency of removal 2,4-DNP through dried sludge adsorbent and modified calcium chloride sludge adsorbent.
Materials and Methods: At first, sludge was dried at temperature of 60 °C. Next, CaCl2 was used to improve adsorption capacity. The removal efficiency of 2,4 dinitrophenol were determined by HPLC at wavelength of 360 nm. The effects of influencing factors including pH, initial pollutant concentration, contact time, and adsorbent dose were examined.                            
Results: The optimum pH of adsorption for both adsorbents was found to be 7. The optimum concentration of 2,4-DNP was 10 ppm. The results obtained from the present research showed that the removal of the contaminant using dried and modified sludge sorbent was increased from 72.6% to 86% at a dosage of 1.5 g. The adsorption kinetics were fitted with the pseudo second order kinetics model for both adsorbents. The isotherm data also showed that the adsorption of this pollutant on both adsorbents is fitted with the Freundlich model.
Conclusion: Results obtained from the present study indicated that the efficiency of the modified sludge ash is more than the non-modified sludge in 2,4 dinitrophenol removal. This can reduce adsorbent consumption in industrial treatment plants.


Page 1 from 2    
First
Previous
1
 

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb