Search published articles


Showing 2 results for Ghany

Mohammad Malakootian, Hassan Izanloo, Maryam Messerghany, Mohammad Mahdi Emamjomeh,
Volume 5, Issue 2 (13 2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: leachate from municipal solid waste landfill is a strong sewage having hazardous toxic substances. It should be treated by choosing a simple, economical, and eco-friendly method. The aim of this study is reduction of COD from the Qom City landfill leachate using electrocoagulation process.  
Materials and Methods: The experimental study was carried out at bench scale using a batch reactor during 2010.  We used a Plexiglas reactor having 0.7 liter capacity, containing nine plate aluminum electrodes connected to a DC power supply (10-60V, 1-5A). Samples were collected in the middle of cell at regular (every 10 minutes) time intervals. The concentration of COD was determined using a COD analyzer. The effects of different parameters including current density (52.08, 69.44 mA/cm2), electrolyte time (10, 20,30,40,50 and 60 min), and voltage range (10, 20, 30, 40, 50 and 60 volt) were investigated.
Results: For a voltage of 60 V and electrolysis time 60 min, the COD removal efficiency was increased from 48.7% for 52.08 mA/cm2 to 77.4% for 69.44 mA/cm2. The highest TSS removal efficiency was obtained at the largest current input when the voltage and electrolysis time were kept at 60V and 60 min respectively.
Conclusion: The results showed that the highest COD removal efficiency (77.4%) was obtained when the current density was 69.44 Ma/cm2 and the voltage and electrolysis time were kept at 60V and 60 min respectively. Power consumption for this removal level was measured to be 431.26 kWh per kg COD removal. The results obtained revealed that the electrocoagulation technology is an effective treatment process for landfill leachate.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Ramin Nabizadeh Nodehi, Hassan Aslani, Mahmood Alomohammadi, Reza Nemati, Kazem Naddafi, Maryam Ghany,
Volume 5, Issue 2 (13 2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Irrigation of agricultural crops using wastewater will increase, in some cases, their growth by 40 to 60 percent. However, this has a high risks for human health because of the presence of higher number of pathogenic organisms. The main purpose of this study was to investigate the feasibility use of Fenton and modified Fenton with copper for the disinfection of raw wastewater.
Materials and Methods: After primarily laboratory physicochemical and biological analysis, the disinfection process was performed in three different phases in each process. First, the disinfectants were injected separately, then we performed disinfection using Fe++ and cu++ ions combined with hydrogen peroxide in order to determine synergistic effect of each catalyst. Direct method was used for fecal coliforms counting. 
Results: Hydrogen peroxide maximum efficiency for inactivation of fecal coliforms was only 0.66log inactivation. Fenton and modified Fenton with copper ions showed a remarkable effect on the bacterial inactivation so that Fenton and modified Fenton with 1 and 2 mg/l of Cu++ inactivated coliforms by 4.73, 3.28, and 4.88 log respectively.
Conclusion: Application of HP alone for the disinfection of raw wastewater is not practicable due to low observed efficiency. However, its combination with ions such as Fe++ and Cu++ increases HP performance in disinfection and has a notable synergistic effect on HP  disinfection power, where, in the presence of each catalyst, hydrogen peroxide can reduce the fecal coliforms of raw wastewater to meet the Iranian Environmental Protection Agency Standards.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb