Search published articles


Showing 2 results for Golshan

Leila Karimi Takanlu, Mahdi Farzadkia, Amir Hossein Mahvi, Ali Esrafily, Masoumeh Golshan,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Cadmium can enter water resources through the industrial wastewater. It could cause intensivly damages to the liver and kidney of humans. Magnetic iron nanoparticles are used to control and eliminate heavy metals from industrial effluents through the mechanisms of adsorption, ion exchange and electrostatic forces. The aim of this study was to evaluate the efficiency of magnetic nanoparticles for adsorption of cadmium. Methods: The magnetite nanoparticles were prepared by co-precipitation method through the addition of bivalent and trivalent iron chloride under alkaline conditions. Characteristics of nanoparticles including particles structure, composition and size were determined using analytical devices such as XRD, SEM, and FT-IR. For optimization of adsorption process of cadmium, some parameters such as pH, contact time, initial concentration of cadmium, nanoparticles concentration, and temperature were studied under different conditions. Results: It was found that 95% of cadmium could be removedAt pH &ge 5.6, 10 mg/L initial cadmium concentration, a dose of 1 mg synthesized magnetite nanoparticles, 10 minutes contact time, and 200 rpm mixing rate at 25 °C. The isotherm of adsorption follows the Langmuir model (R2 < 0.995). Maximum capacity of cadmium adsorption was found to be 20.41 mg/g. Conclusion: Magnetite nanoparticles exhibit high capability for removal of cadmium. The nanoparticles synthesized could be used at industrial scale because of having the magnetic property, which make them easily recovered from aqueous solution through applying a magnetic field.


Masoumeh Golshan, Simin Nasseri, Mahdi Farzadkia, Ali Esrafili, Roshanak Rezaei Kalantary, Leila Karimi Takanlu,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: The use of surfactants enhance the bioavailability of nonbiodegradable contaminants such as PAHs. Biosurfactants are more environmental friendly. In this study the ability of removing phenenthrene from soil by biosurfactant was assessed and compared with that of chemical surfactant. Materials and Methods: A soil sample free of any organic or microbial contamination was artificially spiked with phenanthrene at two concentrations. Then, mineral salt medium at constant concentration of chemical surfactant TritonX-100 and rhamnolipid MR01biosurfactant was added to it in order to have the proportion of 10% w:v (soil:water). A microbial consortium with a potential of phenanthrene biodegradation was inoculated to the soil slurry in two densities (OD=1 and 2) and then it was aerated on a shaker. After eight weeks, the residual concentration of phenanthrene in the soil was extracted by ultrasonic and was analyzed using HPLC. MPN test was used for measuring microbial population. This study was conducted based on the two level full factorial design of experiment. Results: It was found that chemical surfactant exhibited higher PHE removal efficiency than the biosurfactant. Using 120 mg/L of TritonX-100 and rhamnolipid, the PHE removal for the soil contaminated with 50 mg PHE/kg dry soil was 98.5 and 88.7% respectively, while the removal efficieny was decreased to 87 and 76% respectively for the soil contaminated with 300 mg PHE/kg. In the absence of surfactant, the removal efficiency at concentrations of 50 and 300 mg PHE/kg dry soil was achieved 60.76 and 51% respectively. The phenanthrene removal efficiency in OD=2 was more higher than OD=1. In the presence of rhamnolipid, the maximum microbial populations was observed in the second week, while it decreased in the presence of TritonX-100. Conclusion: Use of biosurfactants can be considered as a suitable option in low level pollutant sites. Chemical surfactants as ex-situ has achieved more satisfactory results in high level contaminant sites.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb