Search published articles


Showing 2 results for Goodarzi

Sh Goodarzi, Gh Shams Khoramabadi, M Esmaty, Ma Karami, A Hossein Panahi,
Volume 12, Issue 2 (9-2019)
Abstract

Background and Objective: Wastewater from pharmaceutical industry has high chemical oxygen demand as a result of the presence of organic drugs and antibiotics. In order to meet the environmental requirements, several treatment methods like chemical and electrochemical methods have been widely applied due to their high ability to remove organic compounds from pharmaceutical wastewater. Therefore, the present study aimed to evaluate the efficiency of chemical coagulation/Electro-Fenton treatment method to degrade the organic matter-containing pharmaceutical industry wastewater.
Materials and Methods: The experimental tests were carried out using batch mode. The chemical coagulation process was evaluated as a function of aluminum chloride concentration (25-300 mg/L) and pH (3-10). The effluent from chemical coagulation process was transferred to Electro-Fenton reactor. Effects of H2O2 concentration (100-4000 mg/L), reaction time (up to 120 min), voltage (10-30 V), and pH (3-10) were evaluated. The removal efficiency was determined in term of COD removal.
Results: The results showed that the highest removal of COD in the chemical coagulation was 49% (coagulant dose of 200 mg/L, and pH of 7). In addition, the Electro-Fenton process could be eliminating of 93.5% of COD at the optimum conditions concentration (100 mg/L H2O2, voltage of 20, pH of 3, and contact time of 30 min).
Conclusion: According to the results, it can be concluded that the combination of chemical and electrochemical processes was found to be effective methods for treatment of pharmaceutical wastewater in comparison to the application of each process separately. To reach to the maximum removal efficiency, the environmental parameters should be carefully controlled at their optimum values in each single process.
 

Nahid Rashtchi, Soheil Sobhanardakani, Mehrdad Cheraghi, Amirreza Goodarzi, Bahareh Lorestani,
Volume 15, Issue 2 (8-2022)
Abstract

Background and Objective: Amoxicillin (AMX) is one of the commonly used commercial antibiotics due to its high resistance to bacteria and its large spectrum against a wide variety of microorganisms, which it´s existence in the wastewater from pharmaceutical industries and hospital effluents causes unpleasant odor, skin disorder, and microbial resistance among pathogen organisms, and it can lead to the death of microorganisms which are effective in wastewater treatment. Therefore, this study was conducted to investigate of removal efficacy of AMX from aqueous solutions using GO@Fe3O4@CeO2.
Materials and Methods: In this descriptive study, GO@Fe3O4@CeO2 was synthesized and then used as a photocatalyst for the removal of AMX from aqueous solution. GO@Fe3O4@CeO2 was characterized using X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), SEM-EDX elemental analysis, Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) methods. Additionally, the influence of variables including pH (3-11), amount of photocatalyst (0.006-0.04 g), contact time (0-150 min), and temperature (25-55 °C) was assessed on the efficacy of AMX removal. 
Results: The results indicated that removal efficiency increased up to 90 min contact time, 0.02 g of photocatalyst, and at the temperature of 25 °C. The optimum pH for AMX removal was 10.
Conclusion: GO@Fe3O4@CeO2 could be an effective and available photocatalyst for the removal of AMX from industrial wastewater under UV light.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb