Search published articles


Showing 5 results for Hassani

M Mosaferi, H Taghipour, Am Hassani, M Borghei, Z Kamali, A Ghadirzadeh,
Volume 1, Issue 1 (26 2008)
Abstract

Background and Objectives: Conducted studies about arsenic have shown that consumption of water contaminated with arsenic can causes different adverse health effects in consumers. World Health Organization (WHO) has enacted 10µg/L arsenic in drinking water as a guideline value. Regarding some reports about arsenic presence in a village of Hashtrood county and related health effects and also considering this fact that determination of arsenic as a poisoning chemical is not included in routine monitoring of water by responsible organizations, in present study all of drinking water sources in Hashtrood county in East Azerbaijan province were studied for arsenic presence.
Materials and Methods: Water supply and its sanitation situation were studied in all of cities and residential villages (200 villages) by field visiting. Arsenic content of water samples were determined using Ez arsenic test kit, a product of Hach Company. For assurance of the kit results, 20 water samples with different concentration of arsenic were analyzed using Inductively Coupled Plasma (ICP) method and then achieved results was compared together.
Results: Arsenic was present in drinking water of 50 villages that in 9 villages its level was higher than Iranian standard (50µg/L). During the study totally 11087 persons (21.96% of rural areas population) in Hashtrood county were exposed to different levels of arsenic via drinking water. Correlation between kit and ICP results was significant (R2 = 0.9715)
Conclusion: Studied region in present study is a polluted area to arsenic by geogenic sources. It is necessary to replace water source of villages with higher level than national standard with safe drinking water. Annually measurement of arsenic in drinking water of all villages spatially polluted villages should be considered by responsible organization e.g. Health Network and Rural Water and Wastewater Company. Used kit in our study is recommendable for this purpose.


M Hajsardar, S.m Borghei, A.h Hassani, A Takdastan,
Volume 9, Issue 1 (6-2016)
Abstract

Background and Objectives: In order to optimize wastewater nitrogen removal and to reduce the problems of entering nutrients in final receptors, for example, a lake, partial nitrification, as a novel nitrogen removal method, was studied.

Materials and Methods: The efficiency of simultaneous nitrification and denitrification (SND) in partial nitrification through nitrification/denitrification in fixed-film reactor was surveyed. In this process, ammonium was converted to nitrite by ammonium oxidizing bacteria (AOB) but the activity of nitrite oxidizing bacteria (NOB) was limited at low dissolved oxygen (DO) level. The inflection points of oxidation-reduction potential (ORP) profile were used as the indicators of process optimization.

Results: This research showed that in period 2 at fixed DO level of 0.5 mg/L, nitrite accumulation rate (NAR) was higher than period 1 in which DO was declined from 1 to 0.5 mg/L. In contrast to period 1, SND efficiency was reduced in period 2. In period 3, by increment of the carbon to nitrogen ratio (C/N) to 12.5, NAR increased to 71.4 % and SND efficiency increased to 96.7%. In the long term analysis of proposed method, SND efficiency was, at least, 90%.   

Conclusion: Proper C/N ratio and minimum DO level resulted in higher nitrogen removal efficiencies than the operation in which DO was decreased during aerobic phase. By using a fixed-film reactor and without considering an anoxic step, at DO level of 0.5 mg/L, maximum SND efficiency and maximum NAR would be achieved. 


E Hassani Moghaddam, Ar Bazdar, M Shaaban,
Volume 12, Issue 1 (5-2019)
Abstract

Background and Objective: Nitrate is one of the most important factors in determining the quality of vegetables. Today, due to the excessive use of nitrogen fertilizers to accelerate vegetative growth, many vegetables have a high percentage of nitrates in human diet. The purpose of this study was to investigate the concentration of nitrate in four vegetable species cultivated in Poldokhtar and Khorramabad cities.
Materials and Methods: In this research, the nitrate content of four vegetables including Iranian leek, Basil, Mint and Radish (tuber and leaves) cultivated from olericulture field on Khorramabad and Poledokhtare were measured. A 2kg edible portion of vegetables was randomly collected for each species in triplicate and carried out to the laboratory. The nitrate content was measured according to the instructions of the Institute of Water and Soil of Iran. For this purpose, after preparation of the samples, a spectrophotometer was used to measure absorption at 580 nm. The nitrate content in different vegetables was estimated using a standard curve.
Results: The nitrate mean concentration of the studied vegetables from khorramabad city was 27017 mg/kg for Radish tuber, 9500 mg/kg for Basil, 8408 mg/kg for Iranian leek, 98231 mg/kg for Radish leaves and 5450 mg/kg for Mint. The values for the samples taken from Poledokhtare city were 12933 mg/kg for Radish tuber, 9063 mg/kg for Basil, 6708 mg/kg for Iranian leek, 6296 mg/kg for Radish leaves and 5454 mg/kg for Mint (5454 mg/kg). The values were all higher than the recommended doses for consumption. In control field, the nitrate mean concentration were 1586, 1134, 906, 794 and 662 mg/kg for Radish tuber, Basil, Iranian leek, Radish leaves and Mint, respectively. The values were within the range of recommended doses.
Conclusion: The amounts of nitrate measured in 100g of green tissue in Radish tuber, Basil, Iranian leek, Radish leaf and Mint were 7.36, 3.37, 2.74, 2.64, and 1.98 times more than the daily allowance limit, respectively. Given the high nitrate content in the studied vegetables, it is recommended that cautious is taken for consumption of the vegetables and nitrate content of the vegetables produced in Lorestan province in different seasons should be monitored.
 

Alireza Hajighasemkhan, Lobat Taghavi, Elham Moniri, Amir Hessam Hassani, Homayon Ahmad Panahi,
Volume 13, Issue 1 (4-2020)
Abstract

Background and Objective: Increased use of pesticides and chemical fertilizers in agriculture in order to increase the productivity of fertile lands has led to pollution of water resources with a variety of pollutants, including herbicides. In this study, a new polymer magnetic nanoadsorbent named PV/S-g-3D-GO/N was synthesized and used to remove 2,4-D and MCPA herbicides from aquatic environment.
Materials and Methods: To investigate the synthesized nanoadsorbent structure FTIR, FESEM, TEM, XRD, VSM and TGA techniques were used and the effect of parameters affecting the optimal removal of herbicides by the adsorbent, including pH, temperature, contact time, adsorption dose and initial herbicide concentration was investigated. The kinetic, isotherm and thermodynamic studies of adsorption were also investigated.
Results: The results showed that in the optimal adsorption conditions including pH 3 for both herbicides, contact time of 180 min for 2.4-D herbicide and 300 min for MCPA herbicide, absorption dose 5 g/L and temperature 50°C for both herbicides, the maximum absorption capacity (qmax) was 5.62 mg/g for 2.4-D and 4.94 mg/g for MCPA. The synthesized nanoparticles that were used to remove 2,4-D and MCPA herbicides from real samples were totally successful (100% removal efficiency). For both herbicides studied, the isothermal data followed the Longmuir model (2,4-D: R2 = 0.995; MCPA: R2 = 0.998), and the kinetics of the adsorption process was a pseudo-second-order model (2,4-D: R2 = 0.991; MCPA: R2 = 0.999).
Conclusion: The results of the present study indicate that the synthesized nano-adsorbent can be used to remove phenoxic herbicides from agricultural runoff as well as water sources contaminated with the studied herbicides.

Ehsan Mohammad Hassani, Reza Rafei, Mazaher Moeinaddini, Niki Aghapour,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: One of the largest sources of methane emissions is landfills, and various models have been developed to predict landfill methane production and emissions. The main goal of this research is to utilize the inverse Gaussian model to estimate g methane greenhouse gas emissions and model it using field data. This study introduces a simple method to estimate the amount of methane emissions based on ambient methane concentrations.
Materials and Methods: In this research, the methane emission rates from landfill were estimated for warm (July) and cold (February) seasons using a sampling campaign from 27 stations and standard inverse Gaussian dispersion equations. Monte Carlo simulation was also employed. To determine the model, an optimization-based method, along with inverse scattering modeling, was utilized to process surface emission monitoring data.
Results: The model results indicated during the cold (February) and warm (July) seasons, the methane emission rates were estimated at 1696.99 and 16.53 g/s, respectively. These findings confirm that the methane production and emission during the cold season were lower than in the warm season, likely due to reduced temperature and bacterial activity.
Conclusion: The method used in this study, the inverse Gaussian dispersion model, can be applied to estimate methane gas emission rates from other landfills. However, it necessitates the permanent recording of data and the use of daily or weekly averages in calculations to mitigate potential errors and enhance the accuracy of modeling.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb