Showing 8 results for Hassanzad
E Taheri, M Vahid Dastjerdi, M Hatamzadeh, A Hassanzadeh, F Ghafarian Nabari, M Nikaeen,
Volume 2, Issue 4 (9 2010)
Abstract
Backgrounds and Objectives: Drinking water quality after treatment and before reaching the consumer could be affected by distribution pipes, service lines and Home devices. The structure of water coolers, a home device that are widely used in warm months of the year, could potentially affect the quality of drinking water. The aim of this study was to assess the microbial and chemical quality of water from conventional water coolers.
Materials and Methods : Water samples were collected from 29 water cooler systems at the Isfahan university of medical sciences. 29 control samples also obtained from the nearest drinking water taps. All samples were examined for total heterotrophic bacteria and physicochemical parameters including temperature, ph, turbidity and heavy metals.
Results: All samples from the water cooler systems complied with the EPA guidelines for total heterotrophic bacteria count. There were no significant differences between the levels of heavy metals in water samples from the water cooler systems and taps. There was only a significant difference between the level of Cu in the water samples from cooler systems and taps
Conclusion: The overall results of this study indicated that the use of water cooler systems from hygienic point of view could not cause any problems for consumers
M Heidari, H Saffari Khouzani, M.m Amin, M Ghasemian, E Taherian, L Attari, A Hassanzadeh,
Volume 4, Issue 2 (9 2011)
Abstract
Background and Objectives:Antibiotics and hormones are excreted with other wastes following their influences on bodies.These substances can disturbed treatment process by their entery to the wastewater. In this study the inhibitory behavior of antibiotics Ofloxacin and Ciprofloxacin and hormone stradiol 17- valerat have been investigated on Specific Methanogenic Activity (SMA) of anaerobic biomass.
Materials and Methods: Twenty one SMA tests were done using 120-mLvials in batch mode. In each vial, substrate, biomass and biogas were occupied 66, 17, and 17 % (v/v), respectively. Each test longed in range of 15-30 days. Produced methane was measured by gas replacement with 2N KOH solution as CO2 absorbent.
Results: In this study, at the concentrations of 200, 500 and 1000 mg/L of antibiotic Ofloxacin, the methane production reduced to 45, 76 and 88 percent, respectively. Reduced methane production of 68, 81 and 88 percent was observed in Ciprofloxacin concentrations of 100, 200, and 500 mg/L, respectively. Cumulative methane at the concentrations of 0.1, 1, and 5 mg E2 /L was 66, 90, and 121 mL, respectively
Conclusion: Antibiotic Ciprofloxacin at concentrations similar to the antibiotic Ofloxacin have a greater inhibitory effect on specific methanogenic activity of anaerobic biomass. Also, the hormone E2 at lower concentrations showed more inhibitory effect than other two antibiotics Ciprofloxacin and Ofloxacin.
H Malvandi, N Hassanzadeh,
Volume 11, Issue 3 (12-2018)
Abstract
Background and Objective: Heavy metals contaminations are readily bioaccumulated in aquatic systems and lead to increased concentrations in food chains, posing a serious threat to human health, water-related organisms and aquatic ecosystems. The purpose of the present study was to determine the concentration of heavy metals in surface sediments of CheshmehKile River, to evaluate environmental and ecological risk and to determine the degree of contamination of the elements studied.
Materials and Methods: In this study, 25 samples of surface sediment were collected from the CheshmehKile River. The heavy metals content of the samples was measured by inductively coupled plasma-optical emission spectrometry. According to the content of heavy metals in sediment samples, environmental and ecological risk indices were calculated. Also, river contamination was evaluated by comparing the elements studied values with the sediment quality guidelines values.
Results: The mean concentration of chromium, manganese, iron, cobalt, nickel, zinc and arsenic were 41.27, 356.35, 16756.32, 9.17, 11.87, 41.24 and 24.60 µg/g, respectively. Based on the values of the CF and Igeo indices, all of the elements, with the exception of arsenic, showed a low degree of contamination. The indices of Eir and RI also showed the lowest ecological risk at all stations.
Conclusion: The results of this study showed that the surface sediments of CheshmeKile River in Mazandaran province were somewhat contaminated with arsenic. However, fortunately, the river sediments were of good quality from the point of view of the content of chromium, manganese, iron, cobalt, nickel and zinc.
P Nourozifard, S Mortazavi, S Asad, N Hassanzadeh,
Volume 11, Issue 3 (12-2018)
Abstract
Background and Objective: Marine sediments are the most important component of monitoring the health of aquatic ecosystems. The present study uses sediment quality indices to determine the contamination status in Qeshm ecosystems and to evaluate the toxicity of the elements studied for its organisms.
Materials and Methods: Sampling of surface sediments of seven stations was carried out on Qeshm coastal areas. The samples were digested by a combination of nitric acid and perchloric acid, and the concentration of metals was measured by atomic absorption spectrometry.
Results: The results of modified Hazard Quotient indicated a high pollution rate for copper and nickel metals in most stations, which was consistent with the results of the Potential Contamination Index in relation to nickel metal. Additionally, the results of the Potential Contamination Index and Contamination Factor agreed with the amount of lead element. According to the results, the pollution index of Hamoon Lake and Zakeri pier was highly contaminated and Modified Pollution Index demonstrated a contamination in Romacha, Hamoon Lake, Zakeri pier and Nazes areas. The enrichment factor associated with contamination regarding most of the heavy metals confirmed the indices used to evaluate the comtamination in the study area.
Conclusion: Due to the higher concentrations of the heavy metals in the sediments than that of the quality guidelines, the high toxicity of sediments for the aquatic ecosystems was confirmed. The Romachah, Hamoon, Zakeri stations showed higher pollution levels and sever toxicity for aquatic life. Copper, nickel and in some cases lead, were the main heavy metals that contaminated the sediments in the region.
E Hoshyari, N Hassanzadeh, A Charkhestani,
Volume 12, Issue 1 (5-2019)
Abstract
Background and Objective: Nowadays linear alkyl benzene sulfanate (LAS) is widely used in the production of various detergents. The purpose of this study was to assess the health and ecological hazards of this pollutant on target organisms such as fish and daphnia in the Doroodzan Dam water.
Materials and Methods: According to the research objective and given existing restrictions, 21 water samples were collected in September 2018 from 7 selected stations based on the source of contamination in Doroodzan dam. Water quality parameters including pH, Dissolved Oxygen (DO), potential Redox (ORP), Total dissolve solid (TDS) and Electrical conductivity (EC) was measured at the site. The amount of linear alkyl benzenesulfonate (LAS) was measured using an optimized methylene blue method after transferring samples to the lab. Then ecological and health risk assessment was performed by calculating the RQ index (risk index).
Results: The results showed that the mean of pH, EC, TDS, salinity and DO were 8.88, 732.19 µs/cm, 482.49, 366.16 and 6.87 mg/L, respectively. The highest and lowest concentrations of LAS were 0.039 and 0.055 mg/L, respectively. The results also showed that there is a significant relationship between LAS concentration and pH. The results of the risk assessment showed that the health risk index in all stations is less than 0.1, while the ecological risk index except at station 7, are in low risk level.
Conclusion: In general, the results show that the RQ index in the Droodzan Dam water is in appropriate range and in the low risk level. Therefore, it is necessary to conduct long-term studies in this field to ensure the persistence of optimal water conditions in the dam ecologically and health-wise.
F Jaffari, N Hassanzadeh,
Volume 12, Issue 2 (9-2019)
Abstract
Background and Objective: Research has shown that assessing the toxicity and ecological risk of various types of pollutants, including heavy metals, using specific indicators, is indispensable in the ecological risk assessment of the ecosystem. Accordingly, the aim of this study was the assessment of the ecological effect of heavy metals presence (Pb, Zn, Cu, Cd and, As) in Anzali wetland using Heavy Metals Pollution Index (HPI).
Materials and Methods: 43 water samples were collected from the eastern, western and central parts of Anzali wetland. The samples were transferred to the laboratory, and the preparation steps were carried out using the ASTM method. Concentration of the elements was determined by Inductively Coupled Plasma -Atomic Emission Spectroscopy (ICP-AES). According to the concentration of heavy metals in the water samples, the index (HPI) was calculated. The results of the HPI index were classified into three classes: low risk (<15), moderate (15-30), and high risk (> 30).
Results: The numerical value of the HPI index was 3.59-23.3 with an average of 27.97, indicating the average level of heavy metals pollution in Anzali wetland. Indicator (HPI) in the eastern part of Anzali wetland and the Pirbazar area showed a severe contamination and ecological hazard of the heavy metals and in the Abkenar region showed an acceptable ecological status.
Conclusion: Although the average of HPI in the whole Anzali wetland was modest, but at some stations, especially in the east of the wetland, the HPI indicates the occurrence of ecological hazards in the wetland in the event of uncontrolled entry of pollutants in future. Therefore, monitoring the sources of these pollutants entering to the wetland and controlling the ecological risks is necessary.
Mohammad Sohrabi, Nasrin Hassanzadeh, Fariba Hedayatzadeh, Mehdi Mofid,
Volume 13, Issue 4 (2-2021)
Abstract
Background and Objective: Air quality and distribution of trace elements in the Tehran metropolis were evaluated using transplants of the epiphytic lichen Ramalina sinensis.
Materials and Methods: Thalli of R. sinensis were collected from a non-contaminated area and transplanted in the six urban sites of Tehran for six months. After the end of the exposure period, the content of twelve elements in lichen was determined by ICP-MS method and the obtained data were evalusted using statistical analysis and various indicators.
Results: Based on the results, the order of mean concentration of the trace elements in the R. sinensis lichen samples was determined as: Ca > K > Fe > Mg > Na > Mn > Zn > Pb > Cr > Cu > Ni > Co and the highest amount of bioaccumulation was found for the essential elements. For sevelar elements, significant differences were observed in various sampling sites. Based on the pollution load indexes (PLIs), two sites at Sharif university and Setad Bohran were more polluted than other areas. Exposed-to-control (EC) ratio values for Pb, Zn, Cr, Fe, Mn, Ni, Mg, and Co were also found in the range of 1.25-1.75. Based on the relative accumulation factor (RAF), the accumulation preference of elements by R. sinensis lichen was observed as Na > Cr > Cu > Fe > Mg > Ni > Zn > Mn > Co > Pb > Ca > K, respectively, which represents the significant ability of this species in the accumulation of elements such as Na, Cr, Cu and Fe. PCA and EF analysis indicated that trace elements adsorbed by lichen were mainly sourced from vehicle transportation.
Conclusion: This study demonstrates the application and importance of R. sinensis lichen in biomonitoring of air pollutants elements in urban areas. This approach can justify the suitability, accuracy and cost-effectiveness of lichen compared to other biomonitors for air pollutants and more importantly highlights its capability to the determination of wide levels of air pollution in large scales.
Safieh Hassanzad, Hossein Pirkharrati, Masoumeh Ahangari, Farrokh Asadzadeh,
Volume 17, Issue 1 (6-2024)
Abstract
Background and Objective: One of the significant challenges in mining areas is the pollution of the environment by heavy metals. Therefore, it is crucial to assess the pollution risk associated with mining wastes and take action to mitigate their environmental impact. The current study assessed the risk potential of recently deposited tailings in the Songun copper mining area.
Materials and Methods: Based on the conditions of tailings, 26 samples were randomly selected from the recently deposited mine wastes. Twenty-two thin and thin polished sections were prepared for lithology and mineralogy studies. Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) was employed to analyze all 26 samples, while X-ray diffraction method (XRD) was used to analyze a subset of 10 samples.
Results: Sulfide minerals, as the main source of environmental pollution, remain intact and unaffected in the tailings. However, the majority of potentially toxic elements (PTEs) exhibit higher concentrations in the waste composition than the standard levels, resulting in a total ecological risk index of 49.93. Geochemical indicators highlight significant pollution levels for elements such as lead (Pb), arsenic (As), and copper (Cu). The values of the non-carcinogenic risk index for children (except As and Fe) and adults are lower than 1, indicating a non-significant non-carcinogenic health risk. However, the carcinogenicity index also indicates a significant carcinogenic risk in the case of long exposure to wastes, particularly for children.
Conclusion: Therefore, wastes pose a significant environmental risk potential, and due to this risk, proper management of their storage is necessary to prevent the release of PTEs into the environment.