Search published articles


Showing 4 results for Javid

Amir Hossein Javid, Seyed Ahmad Mirbagheri, Arezoo Karimian,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Dez dam located on Karun River is one of the largest Iranian dams. In a field study, EC, NO3, NH4, PO4, turbidity, TS, alkalinity, coli, temperature, chlorophyll a, DO, BOD5, and Secchi disk (at depths of 0, 2.5, 5, 10, 25, and 50 m)were measured at five sampling points during 2011-2012 water year. Materials and Methods: Water Quality Index and TSI were calculated for all sampling points and quality zonation was conducted in GIS. Results: It was found that the best water quality index for reservoir water is at second sampling point with amount of 61 situated at the center of reservoir, and the worst index is at entering point to the reservoir with amount of 46 in April. The main reason of changes was turnover of thermal stratification. Conclusion: The laboratory analysis and assessing the quality indices revealed that the Dez reservoir water is suitable for variety of public uses, however, it needs advanced treatment for drinking purpose. Moreover, in the case of continuity of pollutant entrance into the reservoir, the eutrophication risk would threaten the reservoir water quality. Eutrophication occurrence will cause serious limitations in water use applicability, increase turbidity, produce toxic materials, and increase sedimentation regime.


Z Javidaneh, Ar Zarsevandi, F Rast Manesh ,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Street dust reflects one of the most important indicators of pollution in the urban environment. Most studies carried out in the world on heavy metal pollution are related to cities and metropolitans, while less attention has been paid to towns. Masjed-e- Soleiman, the most oil-rich town is located in the north eastern part of Khuzestan Province in Iran. This town contains geogenic pollutants such as gas and oil sources, oil and gas activities, oil and gas combustion, industries, and heavy traffic, which make it important from the viewpoint of environmental impact assessment.

Materials and Methods: For monitoring and management of pollution, 11 samples of street dust were collected and prepared from different stations within the town during the dry season (June 2013). Each sample was analyzed using ICP-OES instrument.

Results: Possible sources of the heavy metals were identified by multivariate analyses such as Principal Component Analysis (PCA) and Cluster Analysis (CA). In addition, factors such as the Index of Geo-accumulation (Igeo), Pollution Index (PI), Integration Pollution Index (IPI), and Enrichment Factor (EF) were assessed to determine the degree of heavy metals pollution in street dust of the Masjed-e- Soleiman Town. The results of PCA and CA indicated that the region is mostly affected by oil pollution (both natural and combustion of fossil fuels), traffic, and industrial activities (PI revealed high levels of Pb, Cd, Cu, and Zn pollution in samples and the average level of Ni, As, and V pollution in other samples). Igeo indicated the moderate to severe pollution of some samples to Pb, Cd, Cu, and Zn while no to moderate pollution against Ni, As, and V in other samples. EF for Pb, Cd, Cu, and Zn showed a significant pollution in some samples and other samples represented the least pollution against Ni, As, and V.

Conclusion: Results showed that the concentrations of heavy metals in dust samples were higher than control samples in Masjed-e- Soleiman. Thus, the classification of pollution in street dust in Masjed-e- Soleiman is as follows: IPI> EF> Igeo ≈ PI.


Gholamreza Shaghaghi, Amir Hossein Javid, Sara Allahyaribeik, Ali Mashinchian Moradi,
Volume 17, Issue 3 (12-2024)
Abstract

Background and Objective: The discharge of seawater concentrate from desalination plants into the sea causes irreparable effects on the environment. The purpose of this study is to identify the effects of this discharge, model methods for optimizing it, and design an effective outlet that minimizes environmental impacts and costs. 
Materials and Methods: This study discusses impacts of seawater concentrate discharged into the sea, numerical modeling of diffusion, and outlet design based on discharge standards.A review of articles and sources from databases such as Google Scholar, Academia, Scopus, Civilica and Irandak was conducted using keywords such as “brine discharge”, “numerical modeling”, and “outlet design.” Out of 132 reviewed articles, 45 articles were consistent with the objectives of the study.
Results: The effects of seawater discharge can be observed in the discharge area and at greater distances. Numerical modeling is employed to predict pollutant concentrations at various distances and to determine the optimal discharge point while considering established standards. The design of the diffuser and the use of multiple nozzles at an angle of 60 degrees result in the greatest dilution at the discharge point.
Conclusion: The use of desalination systems necessitates addressing the effects of climate change. Appropriate modeling and design of the outlet are essential for complying with environmental standards and optimizing costs. Further research in this field is needed.

Sanaz Jafari, Amir Hossein Javid, Elham Moniri, Amir Hessam Hassani, Homayon Ahmad Panahi,
Volume 17, Issue 4 (3-2025)
Abstract

Background and Objective: Humic substances are a group of high molecular weight, heterogeneous organic macromolecules formed through biological and geochemical reactions. They are recognized as one of the main precursors of by-products in water treatment processes. Humic acid compounds create various issues in water and soil treatment industries, necessitating their effective removal from water sources. Due to their small size and their ability to separate environmental pollutants, magnetic nanoparticles are used in the treatment of toxic and hazardous pollutants and in remediating contaminated environments. This study aimed to investigate the removal efficiency of humic acid using a three-dimensional magnetic nanoadsorbent and to identify the optimal conditions for removal.
Materials and Methods: First, three-dimensional magnetic graphene oxide was synthesized, and then surface modification was carried out with allyl amine/allyl glycidyl ether. The characteristics of the synthesized magnetic nanoadsorbent were determined using field emission scanning electron microscopy and the surface charge zero point. The removal of humic acid from aqueous solutions on magnetic nanoadsorbent was assessed based on pH, nanoadsorbent dosage, contact time, and temperature, with optimal conditions identified using the Taguchi method. Additionally, the adsorption isotherms, kinetics, and thermodynamics of humic acid adsorption on the magnetic nanoabsorbent were determined, with data analyzed through linear regression and determination coefficients for isotherm comparisons. The reusability of the nanoadsorbent in the humic acid adsorption mechanism was also examined. Experimental studies was conducted on well water samples from Tehran and Manjilabad (Karaj).
Results: The analyses confirmed the structural characteristics and properties of the synthesized adsorbent. Optimal removal of humic acid was achieved at pH 6, an adsorbent dosage of 0.02 g, a contact time of 120 minutes, and a temperature of 25°C, resulting in a 98% removal efficiency. Results indicated that humic acid adsorption followed the Langmuir isotherm, with kinetics corresponding to a pseudo-second-order model, yielding correlation coefficients of 0.9969 and 0.9968, respectively. Thermodynamic data showed that humic acid adsorption by the nanoadsorbent is an endothermic and favorable process.
Conclusion: The use of this nanoadsorbent in removing humic acid from aqueous solutions can be considered as an efficient method. Magnetic nanoabsorbents offer the advantages of easy separation from suspensions using a magnetic field, potential recovery through various methods, and reusability.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb