Search published articles


Showing 3 results for Joneidy

A Kulivand, R Nabizadeh, A Joneidy, M Yunesian, Gh Omrany,
Volume 2, Issue 1 (16 2009)
Abstract

Backgrounds and Objectives:Today, One of the most important environmental issues is solid waste Produced in Dentistry That because of the presence of hazardous, toxic and pathogen agents has special importance. In this survey, solid waste produced in Hamadan Dentistry laboratories and practical dentist offices is studied.
Materials and Methods: In this descriptive study, from 24 Dentistry laboratories in Hamedan 5 offices and from 27 practical dentist offices 5 offices were selected in simple random way. From each offices 3 sample at the end of successive working day (Sunday, Monday and Tuesday) were analyzed. Samples were manually sorted into different 41 components and by means of laboratory scale were measured. Then, measured components were classified based on characteristic and hazardous potential.
Results: Total annual waste produced in Dentistry laboratories and practical dentist offices in Hamaden is 15921.79 and 8677.56 Kg respectively. Production percentages of domestic type, chemical and pharmaceutical waste, potentially infectious and toxic wastes in practical dentist offices were 91.14, 6.7, 2.14 and 0.02 respectively. Dentistry laboratories solid waste comprises of 94.47 percent domestic type and 5.53 percent chemical and pharmaceutical waste. Main components of produced analyzed wastes were 2 components that consist of more than 80 percents of total dental solid waste. So, waste reduction, separation and recycling plans in the offices must be concentrated on these main components.
Conclusion: In order to waste suitable management, it is suggested that in addition to educate waste producer for waste reduction, separation and recycling in the offices, each section of dental waste (toxic, chemical and pharmaceutical, potentially infectious and domestic type wastes) separately and according to related criteria are managed.


F Rashid Ashmagh, R Rezaei Kalantary, M Farzadkia, A Joneidy Jafari, R Nabizadeh,
Volume 2, Issue 3 (25 2009)
Abstract

Backgrounds and Objectives: Polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous pollutants which have carcinogenic and mutagenic properties and accumulated in environment by different actions, therefore treatment of them is important. Biological treatments are simple and cheep technologies. This technology was recommended as a cost- effective method for treatment of these pollutants. In order to investigate the trend of pollution reduction of petroleum hydrocarbons in bioremediation, the phenanthrene biodegradation&aposs model in contaminated soils was studied.
Materials and Methods: Firstly, PAHs capable degrading bacteria was isolated from petroleum contaminated soils and then their ability for biodegradation of phenanthrene was assessed in slurry phase. After that by using Acinetobacter which have the most potential of removing phenanthrene from soil, the biodegradation model was investigated in bench scale.
Results: Phenantherene removal efficiency was obtained 99.4% for 100 mg/kg and 96 % for 500 mg/kg concentrations in 33 and 60 days biodegradation period respectively. Phenantherene reduction rate varied from 2.99 to 8.86 and 1.4 to 11.09 mg/kg/day for 100 and 500 mg/kg concentrations, respectively.
Conclusion: Rate of phenantherene removal is depended on primary concentration of contamination and by increasing of primary concentration, phenantherene removal rate was increased. Also removal efficiency followed zero and first order kinetic model with good correlation.


M Farzadkia, S Salehi, A Aameri, A Joneidy Jafari, R Nabizadeh,
Volume 2, Issue 3 (25 2009)
Abstract

Backgrounds  and Objectives:  Over than 70% of solid wastes is consisted of food wastes with high putrecibility in Iran.  Due to this regard, construction of composting factories for sanitary disposal or fertilizer production from solid wastes was very appreciated in our country. The objective of this research was to study on the quality and comparing of the compost produced by Khomain and Tehran compost factories.
Materials and Methods: This study was accomplished on the compost produce from Khomain and Tehran compost factories about 9 months. For investigation of chemical qualities of these materials, some indexes such as percentage of organic materials, carbon, nitrogen, phosphorus, potash and heavy metals consists of lead, cadmium, mercury and chromium were measured. Microbial quality of these compost materials were defined by assessing of the amounts of coliforms bacteria, salmonella bacteria and parasites ova.
Results: The average amounts of some indexes in compost of Khomain and Tehran were been: organic materials % (37.77, 29.80), carbon %( 22.14, 18.12), nitrogen% (2.08, 1.6), lead (229.6, 59.44 ppm), and chromium (70.2, 19.75), respectively. The microbial quality of these compost samples were agreement with class B of USEPA guidelines.
Conclusion: This study showed that quality of organic materials percent in Tehran's samples was better than Khomain's samples, but these indexes on these samples were lower than the grade No.2 of compost. The percentage of carbon, nitrogen and potash in these samples were desirable but, phosphorus amount were not in sufficient. The heavy metals especially lead and chromium in Tehran's samples were higher than Khomain's samples, but these samples were usually in agreement with guidelines of compost. Due to the defined microbial qualities, these samples could be used as well as amendment agents for poor soil.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb