Search published articles


Showing 5 results for Jorfi

M Farzadkia, R Rezaee Kalantari, S Jorfi, A.r Talaee, G.r Moussavi,
Volume 2, Issue 1 (16 2009)
Abstract

Background and Objectives : Propylene glycol is the main compound of anti-freezing chemicals. A significant amount of propylene glycol is released to the environment after application and contaminates the soil. The main objective of this study was to determine the biological removal of propylene glycol from wastewater and its degradation in soil by the isolated bacteria from activated sludge process.
Materials and Methods: In the present study, the sludge taken from the return flow in a local activated sludge treatment system was used as the initial seed. The performance of the bioreactor in treating the wastewater was evaluated at four different retention times of 18, 12, 6 and 4 h all with the inlet COD concentration of 1000 mg/L. This phase lasted around 4 months. Then, a part of the adapted microorganisms were transported from the bioreactor to the soil which was synthetically contaminated to the propylene glycol.
Results: The average of propylene glycol removal efficiency from the wastewater in detention times of 18, 12, 8 and 4 h in steady state conditions was 98.6%, 97.1%, 86.4% and 62.2% respectively. Also, the maximum degradation in soil was found to be 97.8%.
Conclusion: According to the results obtained from this study, it appears that propylene glycol is inherently well biodegradable and can be biodegraded in liquid phase and soil after a short period of adaptation.


S Jorfi, N Jaafarzadeh Haghighifard, R Rezaei Kalantary, Y Hashempur,
Volume 2, Issue 1 (16 2009)
Abstract

Backgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH3 and also the presence of toxic compounds. The main objective of this study was to application of Strurvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC).
Materials and Methods: Strurvite precipitated leachate was introduced to a bench scale batch decant activated sludge reactor with hydraulic retention times of 6 and 12 hour. PAC was added to aeration tank directly at the rate of 3.5 g/L.
Results:TCOD, SCOD, NH3 and P removal efficiency with addition of PAC in HRT of 6 h were 90,87, 98.3 and 94 % respectively and 96, 95, 99.2 and 98.7 5 in HRT of 12 h.
Concusion:According to obtained data from this work, it can be concluded that Strurvite precipitation before batch decant activated sludge process and simultaneous addition of PAC is promising technology for leachate treatment and can meet effluent standards for discharge to the receiving waters.


N Jaafarzadeh Haghighi Fard, A.r Talaiekhozani, M.r Talaiekhozani, S Jorfi,
Volume 2, Issue 4 (9 2010)
Abstract

Backgrounds and Objectives:Propylene glycol is applied in many industries as raw material and can be released to the environment through wastewater of such industries. The biological treatment of solutions containing high concentration of propylene glycol is difficult and some problems can be observed during this process. The main objective of this study was the investigation of electrochemical degradation of propylene glycol and the parameters influencing on improving removal efficiency.
Materials and Methods: In this study the degradation of propylene glycol was made by passing an electrical current though the synthetic wastewater containing propylene glycol. In order to investigate this process several types of electrode with applied voltage ranging between 5 to 50 V was used. Due to the effect of NaCl concentration on removal efficiency which was mentioned in the literature, the experiment was performed for different NaCl concentrations.
Results: In optimum condition, the maximum removal efficiency of propylene glycol (based onCOD) was obtained equal to 90%. The results showed that rising applied voltage, NaCl concentrationand retention time increase the removal efficiency. The optimum retention time was obtained equalto 50 min. The maximum removal was obtained when aluminum electrode was used. It can beattributed to the production of coagulant material such as Al+3 during this process.
Conclusion: The results revealed that this process can be useful for treating the industrial wastewatercontaining propylene glycol.


S Jorfi, R Rezaei Kalantary, A Mohseni Bandpi, N Jaafarzadeh Haghighifard, A Esrafili, L Alaei,
Volume 4, Issue 1 (24 2011)
Abstract

Background and Objectives: Fluoride is widely used in industries such as manufacture of semiconductors, power plants, glass production etc and release to the environment via their effluents. The purpose of this sturdy was to compare the efficiency of low price adsorbents in fluoride removal from water.
Materials and Methods: The optimum values of pH, contact time and adsorbent dosage were determined and different concentrations of fluoride were experimented in lab scale conditions for bagasse, modified bagasse and chitosan. Then Langmuir and Freundlich coefficient were determined based on optimum conditions.
Results: The pH value of 7, contact time of 60 min and adsorbent dosage of 2 g/L were determined as optimum conditions for all three adsorbents. The most fluoride removal efficiency of 91% was obtained for modified bagasse in optimum conditions.
Conclusion: Based on data obtained in this study, it can be concluded that adsorption by modified bagasse is an efficient and reliable method for fluoride removal from liquid solutions.


S. Jorfi, A. Rezaee, N. Jaafarzadeh Haghighifard, G.a Moheb-Ali,
Volume 7, Issue 3 (5-2014)
Abstract

Background and objectives: Because of problems dealing with bioremediation including being time consuming, low efficiency and toxicity to biota, application of advanced oxidation processes with higher efficiency and shorter remediation time have been considered for removal of hydrophobic hydrocarbons from contaminated soils. A great interest has been directed to Fenton oxidation because of its simplicity and high oxidation potential. The objective of this study was to determine the Fenton-like oxidation efficiency for pyrene removal from soil using iron nano oxides and Fe2+. Material and Methods: The H2O2/Fe molar ratios of unadjusted with native Fe content of soil, 10, and 20 H2O2 concentrations of 0 – 500 mM pH 3, 5, and 7 and soil samples containing Fe2+, native iron and iron nano oxides were investigated for removal of 100 mg/kg pyrene according to Taguchi experimental design. Results: Fe2+, H2O2/Fe molar ratio of 20, pH 3 and H2O2 concentration of 500 mM were determined as optimum conditions. Under optimum conditions, S/N ratio increased to 39.322 and the pyrne removal reached to 86 % for Fe2+ and 83 % for Fe3+ respectively, after 2 hours of reaction time and pH 3. Conclusion: Fenton oxidation using iron nano oxides under defined optimum conditions and neutral pH, can be a suitable alternative to conventional Fenton for remediation of soils contaminated with pyrene.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb