Showing 3 results for Mahmoodi
A Dalvand, A Jonidi Jafari, M Gholami, A Ameri, N.m Mahmoodi,
Volume 4, Issue 1 (24 2011)
Abstract
Background and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater containing C.I. Reactive Red 198 in batch reactor was studied.
Material and Methods: The experiment conducted in a Plexiglas reactor with a working volume of 2L that equipped with 4 aluminum electrodes. The effects of operating parameters such as voltage, time of reaction, initial dye concentration and interelectrode distance on the color removal efficiency, electrical energy consumption and electrode consumption were investigated.
Results: in the optimum operational condition electrocoagulation, is able to remove color and COD as high as 99.1 and 84.3% in aluminum electrode in 75 minutes at 20 volt and 2 cm interelectrode distance, respectively. Under this condition, operating cost was 2986 rails per cubic meter of treated wastewater. Increase in the interelectrode distance and initial dye concentration,lead to the decrease in efficiency of dye and COD removal.While as the voltage and time of reaction increased, energy consumption, electrode consumption, final pH and color removal, increased too.
Conclusion: electrocoagulation process by aluminum electrode is an efficient and suitable method for reactive dye removal from colored wastewater.
Majid Kermani, Mitra Gholami, Zahra Rahmani, Ahmad Jonidi Jafari, Niaz Mohammad-Mahmoodi,
Volume 6, Issue 4 (3-2014)
Abstract
Background & Objectives: Cationic dyes such as basic violet have many applications in different industries. The degradation of basic violet by means of UV, UV/H2O2, US, and US/H2O2 processes was investigated. Materials and Methods: Photolysis process was accomplished in a laboratory-scale batch photoreactor equipped with a 55 W immersed-type low-pressure mercury vapor lamp (UVC) and sonolysis process was investigated in a sonoreactor with high frequency (130 KHZ) Plate Type transducer at 100 W of acoustic power with emphasis on the effect of various parameters and addition of Na2SO4 on discoloration and degradation efficiency. Results: Complete decolonization of cationic BV 16 was achieved in 8 minutes using UV/H2O2 process. In addition, it was found that sonochemical decolorization is a less efficient process, comparing with photochemical process, as the decolorization proceeds to only 65% within 120 min. Low concentration of dye and natural pH resulting from dissolution of salt favors the degradation rate of dye. The results showed that sodium sulfate enhances the rate of sonochemical degradation of dye. In addition, kinetic parameters were obtained by application of first order equations. Conclusion: The results showed that UV/H2O2 and US/H2O2 processes can be effective in the removal of BV16 from aqueous solutions. Considering dye removal efficiency and availability, photochemical process combined with hydrogen peroxide can be recommended as a fast effective method for removal of dyes from aqueous solutions.
Davood Jalili Naghan, Abdolmajid Fadaei, Alireza Mahmoodi, Rouhollah Khodadadi, Shahnaz Razazi,
Volume 14, Issue 1 (5-2021)
Abstract
Background and Objective: N-methylpyrrolidine is a highly potent solvent with toxic and adverse ecological properties that has historically been widely used in the chemical and petrochemical industries. Due to the health and safety، toxicity and environmental effects of effluents containing NMP، these effluents should be pre-treated before biological treatment methods. The aim of this study was to remove N-methylpyrrolidone by photo- Fenton process.
Materials and Methods: For testing, solutions such as sulfuric acid, iron sulfate 7, oxygenated water, sodium hydroxide and distilled water were added to N-methypyrrolidine compounds in the reactor. Then, the removal process was investigated in two stages: complete mixing and adding solutions.
Results: The results revealed that the Fenton process cannot be used successfully to treat the hypothetical refinery effluent containing NMP. However، the photo-phanton process mineralized and degraded the NMP composition. Increase in 30% H2O2 concentration to the optimal dose of 1 mL led to the highest degradation (94%) and decrease in COD level of solution (42.1%).
Conclusion: It can be concluded that advanced oxidation by photo-phanton reaction can be a promising advanced oxidation technology for decomposition and pre-treatment of NMP-containing wastewaters for further biological treatment.