Search published articles


Showing 9 results for Mirzaei

A Mirzaei, A Takdastan, N Alavi Bakhtiarvand,
Volume 4, Issue 3 (1 2011)
Abstract

Backgrounds and Objectives: Selection of  proper coagulants for turbidity removal and determination of effective methods to reduce coagulants dose and related costs in water treatment plants is of critical importance. The present study investigates the effect of returned sludge on improving the performance of poly-aluminum chloride (PAC) in turbidity, coliform bacteria, heterotrophic bacteria removal from drinking water during rapid mixing phase.
Materials and Methods: In order to determine the optimal returned sludge volume injected during rapid mixing with PAC for turbidity, total coliform and hetrophic bacteria, experiments were conducted based on variables such as injected silt volume (from 0 - 125 ml), and varying turbidities from 58 - 112 NTU. At the end of each JAR experiments, remaining turbidity , microbial parameters of samples were measured . Coagulant efficiency in turbidity removal and microbial parameters were determined by Covariance, Duncan analyses and graphs were drawn by MS Excel . The results statistically showed significant among variables (P<0.05).
Results: The results showed that the maximum turbidity removal efficiency of 98.92 at 30 ppm was 10 ml while the maximum turbidity removal efficiency of 98.31 at 10 ppm was 4 ml. The maximum total coliform removal efficiency  of 95.68 obtained for 10 ppm in 10 cc injected sludge volume.
Conclusion: This study shows that addition of returned sludge to flash mixing can reduce the turbidity of samples.


M Gholami, A Sabzali, E Dehghani Fard, R Mirzaei, D Motalebi,
Volume 4, Issue 3 (1 2011)
Abstract

Background and Objectives: One of the complete treatment processes for industrial and municipal wastewater treatment is membrane bioreactor process which has dominant potential in process and operation sections. This study was conducted to compare the performance of extended aeration activated sludge (EAAS) with submerged membrane bioreactor (SMBR) systems in the treatment of strength wastewater, in the same condition.
Materials and Methods: The initial activated sludge was brought from the Plascokar Saipa wastewater plant. The Plexiglas reactor with effective volume of 758 L was separated by a baffle into the aeration and secondary sedimentation parts with effective volumes of 433 L and 325 L, respectively. The chemical oxygen demand (COD) concentration of the influent wastewater of the EAAS and SMBR systems were between 500-2700 and 500-5000 mg/L, respectively.
Results: Results showed that the SMBR system produced a much better quality effluent than EAAS system in terms of COD, biochemical oxygen demand (BOD5), total suspended solids (TSS) and ammonium. By increasing the COD concentration, the concentration of mixed liquor suspended solids (MLSS) and the removal efficiency of organic matter in the SMBR system, were increased regularly, however the removal efficiency of COD in the EAAS system was irregular. 
Conclusion: The average BOD5/COD ratio of effluent in the EAAS and SMBR systems were 0.708±0.18 and 0.537±0.106, respectively. These show that the organic matters in the effluent of the SMBR system was less degradable and thereupon more biological treatment was achieved. Nitrification process was completely done in the SMBR system while the EAAS system could not achieve to complete nitrification.

 


M Hatami Manesh, M Mirzaei, M Gholamali Fard, A.r Riyahi Bakhtiyari, M Sadeghi,
Volume 8, Issue 1 (8-2015)
Abstract

Background and Objectives: one of the most important environmental concerns is heavy metals emissions from human activities to natural ecosystems, particularly transfer to soil. The aims of this study were measured the concentrations of Cu, Zn and Cr in landfill soil and hospital waste ash of Shahrekord municipal solid waste landfill. Materials and Methods: Soil samples were collected from three sites: out of the landfill, municipal landfill and hospital landfill. In each site 2, 1, and 1 stations ware selected respectively and each sample was replicated in three times. Results: We found that there was a significant difference between concentrations of Cu, Zn and Cr in the landfills soil (95% confidence, P <0.05). Furthermore, the highest levels of Zn and Cu were detected in the hospital landfill and also for Cr in the municipal landfills. However, the concentration levels of heavy metals in all of the sites were in order as follows: Zn>Cu>Cr. Conclusion: High concentrations of metals determined in the present study represents the high application of these metals in the structure of municipal and hospital solid wastes and also their inaccurate separation. Thus, awareness about physical and chemical characteristics of municipal and hospital wastes and also the landfill soil is necessary for evaluating their effects on the soil quality and surrounding environments.


N Ravankhah, R Mirzaei, S Masoum,
Volume 8, Issue 3 (12-2015)
Abstract

Background and purpose: Soil contamination resulted from either natural or anthropogenic factors reduces environmental quality. The aim of this study was to evaluate the geoaccumulation, contamination factor, and principal component analysis indices to estimate topsoil contamination in Aran-Bidgol town.

Materials and methods: 135 topsoil samples were collected from Aran-Bidgol town and the metal concentrations of Cd, Pb, Ni, Cu, and Zn in each sample were determined. The index of geoaccumulation (Igeo), contamination factor (CF), and principal component analysis (PCA) techniques were applied to determine  the status and trends of soil contamination in this region. The inverse distance weighting (IDW) was then used to map these soil contamination indices.

Results: The research found that the means concentrations of Cd, Pb, Ni, Zn, and Cu were 0.72, 11.41, 29.87, 48.59, and 14.82 mg/kg respectively all exceeded the background values. Mean Igeo and CF of elements followed the order: Cu> Cd> Ni> Zn Pb. The Igeo and CF maps showed higher values of Cd, Pb, and Zn in areas near industrial estates, brick kilns, and urban areas whereas higher levels of Cu and Ni occurred in urban and agricultural areas. According to the PCA index, two principal components were identified that Cu, Ni and Zn were highly loaded in PC1 and Cd and Pb occurred in PC2.

Conclusion: Results indicated that the concentration of Pb and Cd are mostly affected by human activities, whereas Ni, Zn, and Cu contents are controlled by both anthropogenic and natural sources.


Q Moradi, R Mirzaei,
Volume 9, Issue 4 (3-2017)
Abstract

Background and Objective: Street dust is consisting of solid particles with complex compositions which can be an appropriate indicator to determine urban environmental contamination. Therefore, the purpose of this study was to determine spatial patterns and heavy metals contamination in the street dusts of Kashan.   

Materials and Methods: A total of 48 urban street dust samples were collected and total concentrations of Pb, Cu, Zn, Fe, Cr, Ni, and Cd were determined in the dust samples. The geoaccumulation index was applied to assess heavy metals contamination. In addition, the spatial patterns of heavy metals concentrations in the street dust were determined using GIS.

Results: The results showed that the average concentrations of Zn, Cd, Cr, Fe, Ni, Pb and Cu in the street dust samples were 237.21, 0.43, 37.12, 16589.77, 13.62, 45.18 and 45.58 mg/kg, respectively. The average concentrations of Pb, Cu, Zn, and Fe were higher than their local background values. Based on geoaccumulation index, the heavy metals in the street dust were in the following decreasing order: Pb > Zn > Cu > Ni > Cd > Cr.  According to the spatial analysis results, higher concentrations of heavy metals were observed in the city center and Kashan-Qom highway; whereas, lower concentrations were found in the residential regions.

Conclusion: Based on the obtained results, it seems the high concentrations of Pb, Zn and Cu and to a lesser extent Fe and Cd concentrations in the dust samples was derived from anthropogenic activities; whereas the concentration of Cr and Ni has been mostly affected by natural sources. The high concentrations of heavy metals in the street dusts of Kashan could be attributed to vehicle emissions and industrial activities.


Y Abbasi, F Mirzaei, T Sohrabi,
Volume 11, Issue 3 (12-2018)
Abstract

Background and Objective: The main objective of this study was to evaluate the surface and deep distribution of Pb, Ni and Cu in the wastewater-irrigated area of south of Tehran using GIS and Hydrus. It was expected to find a comprehensive information of heavy metals distribution and their accumulation in the soil. 
Materials and Methods: This study was carried out in wastewater-irrigated area of south of Tehran. Soil sampling from the top surface layer (0-15 cm) and wastewater channels was done. After sample analysis, ordinary Kriging method using different variogram in GIS was applied to explore the surface distribution of Ni, Pb and Cu heavy metals. Moreover, the deep percolation of heavy metals in the soil profile was simulated by Hydrus-1D in a duration of 210 days and the heavy metals concentrations in the soil were estimated.
Results: Exploration of the distribution of Pb using spherical model showed that the variation of this element was in the range of 20-70 mg/kg. This amount varied to 50-60 mg/kg for Cu and about 30 mg/kg for Ni. Moreover, the simulation of heavy metals deep percolation using Hydrus revealed that the most accumulation of heavy metals happened in the 0-15 cm soil surface layer and for deeper layer, this trend was descending.
Conclusion: Comparing the concentration of Pb, Cu and Ni with the maximum allowable amounts of WHO standards demonstrated that Pb concentration was more than the threshold limit. Finally, the applied models could simulate soil’s heavy metals content for both surface and deep distribution in the studied area.
 

R Mirzaei, M Yunesian, Ar Mesdaghinia, S Nasseri, M Gholami, E Jalilzadeh, Sh Shoeibi,
Volume 11, Issue 3 (12-2018)
Abstract

Background and Objective: Antibiotics are a group of emerging contaminants in the aquatic environment. Antibiotic residues threaten the human health and ecosystem in the low concentrations found in the environment. Hence, the present work has been conducted to investigate the occurrence and removal efficiency of most prescribed antibiotics including amoxicillin, penicillin, cefixime, cephalexin, ciprofloxacin, erythromycin and azithromycin detected in two urban wastewater treatment plants (WWTPs) in Tehran.
Materials and Methods: The present work is an applied research based on USEPA method no. 1694, to investigate pharmaceuticals residues in water by HPLC/MS/MS in year 2016. The differences between target antibiotics residues were investigated statistically. After the calculation of the removal efficiencies, the normality of the data was assessed. Then, parametric and non-parametric tests were used to compare the removal efficiencies in both WWTPs.
Results: There was not a significant difference between the influent and effluent concentrations of cefixime and azithromycin (in Ekbatan WWTP) and cefixime (in southern Tehran WWTP). There is a significant difference between the removal efficiencies of cephalexin (p=0.005) and erythromycin (p=0.002) in two WWTPs. The Highest median removal efficiencies were observed for cephalexin 94.41 and 99.47 in Ekbatan WWTP and southern Tehran WWTP, respectively.
Conclusion: In addition to the type of treatment processes, it is physicochemical properties of the selected compound has a significant influence on removal efficiencies.
 

Sara Mirzaei, Mohammad Ahmadi, Nabi Shariatifar, Peiman Ariaii,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Today with progress and improvement of knowledge of human in the food industry field, plastic coatings owing to their unique properties, is extensively applied for a package of beverages and food like water and milk. Phthalate esters (PAEs) are applied to increase e sustainability, efficiency and flexibility of materials. Chronic exposure to stated compounds has a role in the occurrence of several types of human illnesses and cancer. The purpose of this study is to investigate the presence and amount of phthalate esters in different types of milk supplied in Tehran city by using magnetized nanotube crane with magnetic iron oxide and through GC-MS device.
Materials and Methods: In this research, multi-walled magnetic carbon nanotubes were synthesized by applying iron oxide and then synthesized magnetic nanotubes were applied for absorption and extraction of PAEs from the matrix of milk samples. The number of samples is 60 and has been selected from Tehran, which has been repeated twice. After the preparation of sample, by using GC-MS, each PAEs concentration was assessed. SPSS software was used for data analysis (Kruskal-Wallis and Kolmogorov–Smirnov tests).
Results: The outcomes of this study indicated the mean of total phthalates and DEHP in all samples was 5.26 (ranged from 2.94-8.39) and 0.97 (ranged from nd-2.05) µg/L, which were lower than the existing standards (DEHP standard in water is equal to 6 µg/L).
Conclusion: According to the current results and with regard to the lower concentration of each PAEs compared with the standard levels in different types of Iranian consumed milk, it can be concluded that there is no hazardous effect for consumers. 
 

Nahid Jalilian, Abdullah Sheykhi, Leila Mirzaei, Zeinab Gholami, Moayed Adiban,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Butter is a known dairy product in the world and has an important role in human nutrition. Ignoring sanitary tips in this product leads to low quality of the product and outbreak. Therefore, this study aims to investigate bacterial pollution of local butter produced from cow and sheep milk in Ilam city.
Materials and Methods: In this analytical study, 150 samples of traditional cow and sheep butter were collected and studied for microbial contamination for 1 month from different production centers. SPSS version 23 software was used to analyze the collected data.
Results: From 75 samples of cow butter, 25.3% of the samples are polluted to S. aureus, 44% to S. epidermidis, 38.7% to Salmonella, 12% to Total coliform 10.7% to E. coli, and 12% do not have any pollution. From 75 samples of sheep local butter, 12% of the samples are polluted to S. aureus, 72% to S. epidermidis, 48% to Salmonella, 24% to Total coliform, and 17.3% to E. coli. A significant difference (P< 0.05) between pollution to S. aureus and S. epidermis in cow and sheep samples exists.
Conclusion: The results of this study showed that contamination of consumed local butter in Ilam city is considerably high; Therefore, it is important to pay attention to food hygiene in different stages from production to consumption.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb