Mohaad-Reza Mohebbi, Koshyar Azam Vaghefi, Ahmad Montazeri, Mehrnoosh Abtahi, Sogol Oktahi, Reza Gholamnia, Fatemeh Aliasgari, Reza Saeedi,
Volume 6, Issue 2 (9-2013)
Abstract
Background and objectives: In this research, an innovative drinking water quality index for assessing water resources as “modified drinking water quality index (MDWQI)” was developed and applied for evaluating all of the groundwater resources utilized for community water supply in urban areas of Iran during 2011. Materials and methods: Twenty-three water quality parameters and relevant Iranian standards for drinking water quality were selected as input parameters and benchmarks respectively. The MDWQI is calculated using three factors including the number of parameters that excurse benchmarks, the number of measurements in a dataset that excurse benchmarks and the magnitude of excursions. The MDWQI scores range from 0 to 100 and classify water quality in five categories as excellent (95-100), good (80-94), fair (65-79), marginal (45-64), and poor (0-44). Results: According to the MDWQI value, about 95% of the groundwater resources were in the good condition and the others were in the fair or marginal condition also the best and the worst water quality of water resources were observed in Ardebil Province and Qom Province respectively. The three parameters of fluoride, magnesium, and nitrate recorded the highest rates of violation to be 74, 32, and 13% respectively. Conclusion: The nationwide average score of the MDWQI was 85 (good description). This study indicated that the MDWQI and its sub-indices could describe the overall water quality of water bodies easily, reliably and correctly and have the potential suitability for extensive application all over the world.
Fatemeh Mohebbian, Azadeh Tavakoli, Abdolhossein Parizanganeh, Younes Khosravi, Isa Eskandari,
Volume 13, Issue 1 (4-2020)
Abstract
Background and Objective: Conversion of houses into residential towers in worn-out urban textures increases population. Schools of the vicinity would face with multiplicity and limited space for students, leading to noise pollution. The purpose of this study was to evaluate the noise levels during morning and afternoon shifts among two primary schools in Zanjan.
Materials and Methods: Measurements had been done using sound level meter, KIMO DB100. The equivalent noise level (Leq) measured during school year (2018-2019) in 10 stations. The measurements were done in three seasons (autumn, winter and spring) and in each season for two weeks. The data of the two schools were used for drawing charts and zoning by ArcGIS using IDW method. In addition, questionnaires were distributed among the teachers and school’ neighbors. The data were analyzed by SPSS software.
Results: The results showed that all the stations were tackled with noise pollution. The highest levels were related to school’s shift change and break times. The morning shift schools experienced higher levels of noise in comparison to the afternoon ones (1.87 and 2.1 dB, respectively for boys and girls). Leq values for boys’ school was 2 dB higher than that of the girls’. The noise level in the schools were 72 dB, which is 17 dB higher than the standard level 55 dB.
Conclusion: The residents living close to the schools were exposed to noise pollution for almost 10 hours a day. This could be regarded as harmful. The zoning maps showed that southwest side of the yard, adjacent to the neighboring residential buildings, had the highest levels of noise. This study demonstrated the site selection for the schools were not properly done. Having a control strategy is needed.