Showing 15 results for Nabizadeh Nodehi
N Jaafarzadeh Haghighifard, M.m Mehrabani Ardekani, R Nabizadeh Nodehi, A.r Yazdanbakhsh,
Volume 2, Issue 1 (16 2009)
Abstract
Backgrounds and Objectives: in recent years, mobile bed biological reactors have been used progressively for municipal and industrial wastewaters treatment. Dissented experiment is a trial that significant changes will accrue for influent variables in the process, and generally used for identification of the effective factors and optimization of the process. The scope of this study was determination of the optimized conditions for the MBBR process by using of Taguchi method.
Materials and Methods: Reactor start up was done by using of the recycled activated sludge from Ahwaz wastewater treatment plant. After that and passing the acclimation period, with hydraulic residence time equal to 9 hours matched for 1000, 2000 and 3000 mg/l based on COD respectively, for optimization determination of the acclimated microbial growth, the variables change (pH, nitrogen source, chemical oxygen demand and salinity) were determined in 9 steps, and all of the results were analyzed by Qualitek -4 (w32b).
Results:In this study, organic load removal based on COD was 97% and best optimized condition for MBBR were (inf. COD=1000 mg/l, pH= 8, salinity = 5% and the Nitrogen source= NH4CL)
Conclusion: Based on our finding, we may conclude that Taguchi method is on of the appropriate procedure in determination the optimized condition for increasing removal efficiency of MBBR.
A Ghanavati Hormozi, K. Naddafi, R. Nabizadeh Nodehi, N. Jaafarzadeh,
Volume 3, Issue 1 (3 2010)
Abstract
Background and Objectives:Fanavaran petrochemical company is located on the shore of Persian Gulf on west south of Iran, Imam Khomeini Bandar, petrochemical special economic zone with of 25 hectares area. Two units of this company, methanol unit with production capacity 1000000 tons/years and monoxide carbon unit with 140000 tons/years were studied for determination and emission factories of SO2, CO2, CO, NO, NO2, NOx Gases.
Materials and methods: With attention to project goals, for implementation of this project 14 months took into from April 2008 till June2009.For goals provide of mentioned research on this basis,case sampling were done from 3 emission sources by using of direct reading device of gas concentration according to standard methods of United State Environmental Protection Agency.
Results: Results of the study indicate that concentration of issued pollutant gases from these units is in the level lower than Iran department of environment standard level. The total amount of emission Factory of SO2, CO2, CO, NO, NO2, NOx gases diffused from these units are11.7×10-6 , 81/8×10-6, 0.14×10-6, 431.5×10-6, 19.2×10-6 , 681.2×10-6kg /tons million production in a year respectively.
Conclusion:Parameters which optimization is performed in accordance with them, include of additional air percentage, exit air temperature from pre heater, and fuel type, in fact with regarding these 3 factors. effects, the work is done in a manner that the amount of pollutants diffusion is near to minimum and the selected best fuel.
M.h Dehghani, S Nasseri, M Ghaderpoori, A.h Mahvi, R Nabizadeh Nodehi,
Volume 3, Issue 4 (8 2011)
Abstract
Backgrounds and Objective: Surfactants are one of the largest pollutants which exist in urban and industrial wastewaters. Large quantities of surfactants have entered to the environment since last decade due to increased use of synthetic detergent in industrial and home consumptions.In this study, the efficiency of UV/H2O2 process in removal of linear alkylbenzane sulfonate (LAS) from aqueous solutions was investigated.
Materials and Methods: In this study methylene blue active substane(MBAS)method and spectrometery were used to determine anion and residual surfactant respectively. In this study important variables were H2O2 concentration, initial concentration of surfactant, pH and duration of UV radiation. The effect of UV/H2O2 process on the degradation of LAS was analyzed statistically by using Multiple Linear Regression test.
Results: The resulted showed that after 20 minute, ultraviolet radiation solely removed 38.44 percent of Anionic detergent, Hydrogen peroxide showed no significant removal of detergent solution in the time course study. The efficiency of UV/H2O2 process in 10, 20 and 30 minute were to 86.2, 90 and 96.5 %, respectively.
Conclusion: The results showed that the efficiency of ultraviolet radiation and hydrogen peroxide process in anionic detergent was not significant thoogh it was considerable in combination process (UV/H2O2).
K Naddafi, R Nabizadeh Nodehi, M Jahangiri Rad,
Volume 3, Issue 4 (8 2011)
Abstract
Backgrounds and Objectives: Anthraquinone dyes such as reactive blue29 in water resources and industrial wastewater effluents are one of the most environmental setbacks in many countries. Various methods have been considered to remove these dyes One of which is adsorption.
Materials and Methods: All adsorption experiments were conducted in different pHs and various concentrations of adsorbents. The initial concentration of reactive blue 29 chosen in this study was 30mg/L.Adsorption isotherms were determined and correlated with Longmuir, Freundlich and BET models.
Results: The maximum adsorption capacity of reactive blue 29 onto single wall carbon nanotubes was 496mg/g.Results showed that the best pH for adsorption was 5 followed by pH3 and 8. Kinetic study showed that the equilibrium time for adsorption of RB 29 to SWCNT is 4 hr.
Conclusion:According to the results obtained BET isotherm fitted well the experiment. It shows the adsorption of reactive blue 29 onto single wall carbon nanotubes is multilayers and the mechanism of SWCNTs adsorption toward RB29 is based on weak van der waals forces.
S Hemmati Borji, S Nasseri, R Nabizadeh Nodehi, A.h Mahvi, A.h Javadi,
Volume 3, Issue 4 (8 2011)
Abstract
Backgrounds and Objectives: Phenol and phenolic compounds are widely used in industry and daily liFe, and are of high interest due to stability in the environment, dissolution ability in water and health problems. In this regard, phenol removal from water is of high importance. The purpose of this study was to investigate the efficiency of photodegradation process for removal of phenol from aqueous system by use of Fe-doped TiO2 nanoparticles prepared by sol-gel method.
Materials and Methods: Phenol concentrations of 5, 10, 50 and 100 mg/L were prepared and exposed to UV and Fe-doped TiO2, separately and simultaneously. Also the effect of initial phenol concentration, Fe-doped TiO2 loading and pH were studied. Various doses of photocatalist investigated for Fe- doped TiO2 were 0.25, 0.5 and 1 g/L. pH was studied at three ranges, acidic (pH=3), neutral (pH=7) and alkaline (pH=11).
Results: Maximum degradation was obtained at acidic pH, 0.5 g/L of Fe-doped TiO2 for all of phenol concentrations. With increasing initial concentration of phenol, photocatalytic degradation decreased. In comparison with Fe-doped TiO2/UV process, efficiency of UV radiation alone was low in phenol degradation (% 64.5 at 100 mg/l of phenol concentration). Also the amount of phenol adsorbed on the Fe-doped TiO2 was negligible at dark conditions.
Conclusion: Results of this study showed that Fe(III)- doped TiO2 nanoparticles had an important effect on photocatalytic degradation of high initial phenol concentration when Fe(III)-doped TiO2/ UV process applied.
Fahim Amini, Masoud Yunesian, Mohammad Hadi Dehghani, Nima Hosseni Jazani, Ramin Nabizadeh Nodehi, Maasoumeh Moghaddam Arjomandi,
Volume 5, Issue 1 (6 2012)
Abstract
MicrosoftInternetExplorer4
Background and Objectives: Nosocomial infection is the cause of deaths, morbidity, higher costs
and increased length of stay in hospitals. Correct and appropriate use of
antiseptic and disinfectants play an important role in reducing infections. In
this study the efficacy of antiseptics on bacteria causing hospital infections
has been studied.
Materials and Methods: This study was conducted in the laboratory of Imam Khomeini Hospital of Uremia.
In this study the Antimicrobial activity of Descocid, Korsolex basic, Mikrobac
forte and persidin 1% was studied against bacteria causing hospital infections
such as Enterobacter aeruginosa 1221 (NCTC 10006), Staphylococcus epidermidis
(PTCC: 1435 (Cip81.55) and Pseudomonas aeruginosa Strain PAO1. Sensitivities of
bacteria were determined by Minimum inhibitory Concentration (MIC) and Minimum
bactericidal Concentration (MBC) antiseptics. In the second stage, the
concentration of antiseptics was prepared according to the manufacturer's
suggested protocol and the effect of antimicrobial agents were studied at the
certain concentration and contact time.
Result: All
disinfectants (Descocid, Korsolex basic, Mikrobac forte) concentration and
contact time, Accordance with the manufacturer's brochure, had inhibitory
effect on all bacteria. That this is consistent with the manufacturer's
brochure. Persidin one percent in concentration of from 2 and 4 V/V % and
exposure time 5 minutes could not inhibit the growth of bacterial. But at
concentrations of 10 and 20% respectively 15 and 30 minutes exposure time, all
three types of bacteria can be inhibited, which is consistent with the
manufacturer's claims.
Conclusion: In this
study, the efficacy of antiseptics was determined with the Micro-dilution
method recommended by the NCCLS. Korsolex basic, weakest antiseptics (the
highest MIC) for the inhibition of three bacteria was determined. But Between
all four antiseptics (according to manufacturer concentration), Only one percent
Percidine 2 and 4 V/V % in consumer
dilution and 5 minutes exposure time failed to inhibit the growth of
Pseudomonas aeruginosa, Staphylococcus epidermidis and Enterobacter aeruginosa.
Mahmood Alimohamadi, Ebrahim Molaee Aghaee, Ramin Nabizadeh Nodehi, Gholam Reza Jahed, Sasan Rezaee, Akbar Goldasteh, Shahrokh Nazmara, Hassan Aslani,
Volume 5, Issue 2 (13 2012)
Abstract
MicrosoftInternetExplorer4
Background and Objectives: Heavy metals including antimony and cobalt as two
contaminant factors leach from polyethylene terephthalate packages into water
under some conditions. Therefore, their detection was concerned at different
storage conditions.
Materials and Methods: Five time-temperature treatments were carried out for 5 water samples. Storage
conditions were defined as following: at outdoor and sunlight ambient
temperature, room temperature, and at 40˚C at different intervals for 8 weeks,
at 65˚C for 6 weeks and 80˚C for 7 days. Detection was performed by ICP-AES
method and the data analysis was processed by SPSS software.
Results: Antimony
concentration increased by storage time at all temperatures and for all
samples, however enhancing proportion was different in samples. At outdoor,
40˚C and room temperature, concentration increase was below the MCL by the end
of storage period. But at 65˚C and 85˚C, antimony concentration exceeded MCL by
study time and the difference between samples 4 and 5, for example, was
significant (p≤0.05). Cobalt concentration at the beginning and during the
study was also too less and lower than the detection limit.
Conclusion: By
increasing temperature and time, leaching of antimony into water increases.
Moreover, sunlight has effect but not noticeable at the temperature of present
study. In this study, blue or clear packaging had no significant effect on
antimony leakage (P>0.05).
Ramin Nabizadeh Nodehi, Hassan Aslani, Mahmood Alomohammadi, Reza Nemati, Kazem Naddafi, Maryam Ghany,
Volume 5, Issue 2 (13 2012)
Abstract
MicrosoftInternetExplorer4
Background and Objectives: Irrigation of agricultural crops using wastewater will
increase, in some cases, their growth by 40 to 60 percent. However, this has a
high risks for human health because of the presence of higher number of
pathogenic organisms. The main purpose of this study was to investigate the
feasibility use of Fenton and modified Fenton with copper for the disinfection
of raw wastewater.
Materials and Methods: After primarily laboratory physicochemical and biological analysis, the
disinfection process was performed in three different phases in each process.
First, the disinfectants were injected separately, then we performed
disinfection using Fe++ and cu++ ions combined with hydrogen peroxide in order
to determine synergistic effect of each catalyst. Direct method was used for
fecal coliforms counting.
Results: Hydrogen
peroxide maximum efficiency for inactivation of fecal coliforms was only
0.66log inactivation. Fenton and modified Fenton with copper ions showed a
remarkable effect on the bacterial inactivation so that Fenton and modified
Fenton with 1 and 2 mg/l of Cu++ inactivated coliforms by 4.73, 3.28, and 4.88
log respectively.
Conclusion: Application of HP alone for the disinfection of raw wastewater is not
practicable due to low observed efficiency. However, its combination with ions
such as Fe++ and Cu++ increases HP performance in disinfection and has a
notable synergistic effect on HP
disinfection power, where, in the presence of each catalyst, hydrogen
peroxide can reduce the fecal coliforms of raw wastewater to meet the Iranian
Environmental Protection Agency Standards.
Fatemeh Momeniha, Ramin Nabizadeh Nodehi, Mohammad Sadegh Hassanvand, Amir Hossein Mahvi, Kazem Naddafi,
Volume 5, Issue 2 (13 2012)
Abstract
MicrosoftInternetExplorer4 Background and Objective: Dioxins and Furans are dangerous and highly toxic compounds entering to the environment from natural and manmade sources. Having high stability and half-life, these compounds remain for a long period in the medium and bring about severe effects on human beings and the environment. The aim of this study was to identify dioxins and furans emission sources in Iran and to estimate their contribution in emission rate.
Materials and Methods: First, we identified the emission sources of dioxins and furans and then necessary data was gathered by referring to the authorized organizations and filling the prepared UNEP questionnaires. We used Excel software to analyze the data collected.
Results: According to the results obtained, total dioxins and furan emission in Iran in 2010, was 1957 g TEQ/yr out of this amount, 705.8 g TEQ is emitted to the atmosphere and 643.2 g TEQ is residual ash. Therefore, dioxins and furans emission rate was 26.4 µg TEQ/capita in Iran. The most rates of emissions were associated with uncontrolled open burning (732.8 g TEQ/yr) and ferrous and nonferrous metal production (635.7 g TEQ/yr) such as cupper, iron, and steel.
Conclusion: Our findings showed that the emission rate of Dioxins and Furans is much higher in Iran compared with other countries and appropriate management strategies are required to control these dangerous pollutants.
!mso]>ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id="ieooui">
Amir Hossein Mahvi, Noushin Rastkari, Ramin Nabizadeh Nodehi, Shahrokh Nazmara, Simin Nasseri, Mahboobeh Ghoochani,
Volume 6, Issue 3 (12-2013)
Abstract
Background and Objectives:Chlorination is the most common method of water disinfection. Chlorine reaction with natural organic compounds nor removed completely during treatment process would result in forming disinfection byproducts. Followed by trihalomethanes, Haloaceticacides are the second main byproducts of chlorination in water. The research works conducted in Iran have assessed trihalomethanes. Hence, this is the first time we are reporting haloacetic acids in Iran.
Materials and Methodology: We collected samples from surface water resources and treated water in Tehran for six consecutive months (first half, 2010). We measured temperature, pH, UV adsorption at 254 nm and TOC in each surface water sample and analyzed pH, residual chlorine, and haloacetic acids in the treated water samples.
Results: We found that TOC in surface water resources is 3.6-4.42 and 1.78-2.71 mg/l in spring and summer respectively. Moreover, haloacetic acids concentration was found to be 41.7-55.56 and 34.83-43.73 μg/l in spring and summer respectively.
Conclusion: Our results revealed that concentration of NOM, TOC, and HAAs was more in spring than summer. In addition, concentration of HAAs was depended up on NOM and TOC. Considering maximum permeable concentration of HAAs (60 μg/l) by EPA, it can be claimed that concentration of HAAs was less than the maximum permissible level in all of the samples. However, the immanency of the monitored values to the standard values can be a warning for concerned authorities in water industry.
R Nabizadeh Nodehi, Ar Mesdaghinia, S Nasseri, M Hadi, H Soleimani, P Bahmani,
Volume 9, Issue 4 (3-2017)
Abstract
Background and Objective: Water corrosion and scaling are known as destructive phenomenon of drinking water quality and water facilities. In this study, the groundwater tendency to corrosion or scaling in source water, water storage reservoirs and distribution system were studied. Simultaneous use of some qualitative and a quantitative index along with statistical analyses to assess the water scaling or corrosion tendency were investigated.
Materials and Methods: The data analysis of groundwater, water storage reservoirs and water distribution system in rural area of Kurdistan province were analyzed and the amount of Langelier (LI), Ryznar (RY), Pockorius (PSI) and Larson–Skold (LS) and CCPP indices were determined. Corrosion and scaling threshold for qualitative indices were determined based on CCPP index. The mean of indices was compared with the thresholds using independent t-test. ANOVA was used to assess the difference between the indices in different sources of water.
Results: The balance range for LI, RY and PSI found to be -0.1-0.05, 7-9 and 7.1-8.5. The mean CCPP for groundwater, reservoirs and networks were 9.27 ± 1.29, 9.13 ± 1.25, 11.25 ± 1.23, respectively. All three sources of water have some tendencies toward scaling; however, a significant balance status was confirmed statistically. According to Larson–Skold index, sulfate and chloride anions did not play a role in scaling process.
Conclusion: The use of qualitative indices with CCPP index can provide more accurate estimation of water tendency toward scaling or corrosion. The assessment of qualitative indices along with CCPP is recommended in drinking water corrosion monitoring studies.
K Naddafi, M Yunesian, S Faridi, A Rafiee, S Parmy, Gh Safari, R Nabizadeh Nodehi , K Yaghmaeian, N Rastkari, R Ahmadkhaniha, S Niazi, M Hoseini,
Volume 10, Issue 1 (6-2017)
Abstract
Background and Objective: Polycyclic aromatic hydrocarbons (PAHs) are a group of organic pollutants that are mostly generated during the incomplete combustion. The main objective of this study was to characterize potential sources of PAHs in Tehran.
Materials and Methods:, Samples of PM10 were collected at 10 monitoring stations belonging to Tehran Air Quality Control Company (AQCC) and transferred to laboratory for analysis. Besides, a SKC Flite 2 Air Sampling Pump (SKC, USA) equipped with a sampling head and PM10 size-selective inlet was used at four stations to compare the results obtained by collecting AQCC monitors (AQCCMs) tapes with the standard sampling procedures for assessing the interchangeability of two field sampling methods. The principal component analysis (PCA) and diagnostic ratios were applied to identify emission sources and source contribution.
Results: The average diagnostic ratios of phenanthrene (Phe)/ (Phe+anthracene (Ant)), benzo(a)anthracene (BaA)/ (BaA+chrysene (Chry)), fluorantene(Flu)/ (Flu+pyrene (Py)), and indeno(1,2,3cd) pyrene (IcP)/(IcP+benzo(ghi)perylene (BghiP)) in samples were 0.79, 0.52, 0.43 and 0.38, respectively. These ratios showed that the combustion, especially fossil fuels and motor vehicles, was the main sources of PAHs emission in Tehran. The results of PCA analysis also indicated that 49, 29 and 22% of PAHs sources in Tehran atmosphere were attributed to gasoline-driven vehicles, diesel vehicles and other sources, respectively.
Conclusion: According to the results, the combustion, especially fossil fuel and motor vehicle, was the main sources of PAHs emission in Tehran.
M Heydari, R Nabizadeh Nodehi, M Ali Mohammadi, K Yaghmaeian,
Volume 10, Issue 1 (6-2017)
Abstract
Background and Objective: Bottled water consumption is rapidly increasing in recent years for various reasons.The main aim of this study was to survey the geological origin of Iranian bottled water and determine compliance or lack of compliance with the experimental data obtained through sampling 71 brands of drinking bottled water and mineral water.
Materials and Methods: In this study the coordinates of access points as a georef of the chosen points were launched on the "Iran geological map" and "Iran mineral and warm water map." The compliance of laboratory data and water types with the geological data were evaluated and compared with the important ionic ratios of the extracted water through using awh software.
Results: In examining 71 brands of the bottled water, 28% of the brands did not agree with the laboratory results, reflected by observing higher levels of bicarbonate in 50% of the bottled waters than those of the geological data.. Additionally, 70% of water types were calcic bicarbonate. In the bottled waters from North Alborz range with coastal Time deposits around the Caspian Sea, there was a source of brine or sea water that was about 55% of this amount.
Conclusion: Water pass through different geological structures and the dissolution phenomenon might be an important factor for the observed disagreement. Because chemical treatment and use of additives on mineral waters are not allowed it prompts further studies to determine the cause and origin of this issue through sampling from the factory and water source.
V Past, K Yaghmaeian, R Nabizadeh Nodehi , Mh Dehghani, M Momeni, M Naderi,
Volume 10, Issue 2 (9-2017)
Abstract
Background and Objective: Environmental pollution due to dumping construction and demolition wastes has adverse effects on public health. This study aimed to select the best method for managing construction and demolition wastes disposal in Tehran by AHP.
Materials and Methods: This research was a descriptive study. The study population consisted of environmental health experts in the field of construction waste management. Initially, criteria and alternatives for construction waste management, recycling and reuse and landfilling were identified and classified. Using Analytical Hierarchy Process (AHP), different outcomes were compared based on scoring by Expert Choice 11 software.
Results: The results of this study showed that the discharge percentage in the permanent landfills was 68%, in temporary pits was 9% and in recovery centers was 23% in the last 6 years. The final priority of criteria with respect to the economical criterion was reuse (0.492), recycling (0.274) and landfilling (0.235), respectively. Also, according to the environmental criterion, the scores for reuse, recycling and landfilling were 0.492, 0.373 and 0.198 respectively. Based on social criterion the calculated scores were 0.5, 0.279 and 0.222 for landfilling, recycling and reuse, respectively.
Conclusion: In this study, the reuse option with the weight of 0.439 was the best disposal option; and the recycling option with the weight of 0.312 was the second priority. Landfilling showed the lowest score with the weight of 0.250.
N Golchinpour, N Rastkari, R Nabizadeh Nodehi, M Abtahi, A Azari, E Iravani, K Yaghmaeian,
Volume 10, Issue 4 (3-2018)
Abstract
Background and Objective: Triclosan is one of the substances as anti-microbial that is used in many of these pharmaceutical products. This compound can affect human such as reduction of thyroid hormone levels, antibiotic resistant, and increasing skin cancer. This study evaluated the performance nanophotocatalysis process UV/Xe/TiO2-GO on triclosan removal from aqueous solutions.
Materials and Methods: Synthesis of TiO2@GO and its structure was analyzed by SEM, EDX and FTIR. The effects of pollutant concentration, catalyst dosage, and contact time on the removal of Triclosan were studied by DOE software according to response surface methodology. Analysis of variance test was considered for the influence of parameters. Optimum process condition was determined by desirability factor.
Results: Optimum conditions regarding concentration of pollutant, contact time, and catalyst dosage were determined as 0.205 g/L, 14.898 min, and 0.487 mg/L, respectively. Maximum removal efficiency in optimum condition was 97.542 percent. The catalyst dosage was the most effective parameter in removal of Triclosan.
Conclusion: Using of TiO2@GO and xenon lamp had acceptable efficiency for the removal of Triclosan. The use of Xenon lamps alone was economically affordable.