Search published articles


Showing 6 results for Nassiri

M Mohammadian, J Nouri, N Afshari, J Nassiri, M Nourani,
Volume 1, Issue 1 (26 2008)
Abstract

Background and Objectives: Heavy metals processing industry has always been a major cause of concern which affects soils, surface waters, ground waters and river sediments contaminations. Thus, the Zanjan Zinc and Lead Smelting Plant has been considered as a potential source of contamination.
Mterials and Methods: This cross-sectional study has been conducted in February 2008 in the site region .The concentrations of Lead, Zinc and Cadmium have been assessed. The samples have been taken from 17 wells and atomic absorption spectrophotometeric method has been used to assess the samples. In order to find out and locate the exact situation of the wells under study, Global Positioning System instrument has been used. The correlation between the concentration of each metal and the distance of studied well from the plant has been assessed too.
Results: The findings of this study showed that lead and cadmium concentrations were 53% and 59% respectively out of the guideline values of World Health Organization.
Conclusion: The concentration of Zinc was lower than both national and international values in all samples. As the heavy metal concentration is very important for human health status, the other fields of study like heavy metal air pollution effects and related diseases and conditions should be studied and assessed.


P Nassiri, M Monazam Esmaeelpour, A Rahimi Foroushani, H Ebrahimi, Y Salimi,
Volume 2, Issue 2 (16 2009)
Abstract

Backgrounds and Objectives: Noise in large cities is considered by the World Health Organization to be the third most hazardous type of pollution. Buses are an interesting object of study in the theme of noise pollution. They are at the same time a source of urban environmental (traffic) noise and occupational noise exposure source for drivers. The object of this study is Occupational noise exposure evaluation in drivers of bus transportation of Tehran city.
Materials and Methods: Noise levels in 90 buses were sampled in three separate sub-sample including (1)30 Ikaroos buses (2)30 Man buses (3)30 Shahab buses, which were selected by simple random sampling. Noise exposure level was normalized to a nominal 8-h working day (LEX, 8h). Simultaneous Octave Frequency Analysis were measured and sound intensity level (SIL) for bus drivers were calculated. Results, which are obtained from separate buses were compared together and too with standard levels.
Results: the normalized noise exposure levels (LEX, 8h) in Ikaroos bus drivers(82dB A) were higher than that of in in Man bus drivers (77/6dB A) and this Values were higher than that of in Shahab bus drivers(75dB A).SIL values for Ikaroos bus drivers were higher than other that of other bus drivers. Results obtained of Frequency Analysis showed that age of buses in mid frequencies ws a meaningful on noise increase.
Conclusion: Results showed that type and age of buses were effective factors in drivers. noise exposure levels (LEX, 8h), which was consistent with previous studies in this field.


M.r Monazzam, M Naderzadeh, P Nassiri, S Momen Bellah,
Volume 3, Issue 2 (6 2010)
Abstract

Backgrounds and Objectives: There is a considerable notice in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD) on environmental single T-shape barrier.
Materials and Methods: A 2D boundary element method (BEM) is used to predict the insertion loss of the tested barriers. The results of rigid and with quadratic residue diffuser (QRD) coverage are also predicted for comparison.
Results: It is found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It is also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers however utilizing wire meshes with flow resistivity higher than specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to barrier model .QR4. can reach up to 4- 6 dB.
Conclusion: Employing PRD on the top surface of T-shape barrier is found to improve the performance of barriers compared with using rigid and QRD coverage at the examined receiver locations.


P. Nassiri, M.r Monazzam, K Azam, N Hosseini Gousheh, S Farhang Dehghan,
Volume 4, Issue 4 (2 2012)
Abstract

Background and Objectives: Sound of motorcycles plays an important role in noise pollution in big cities. This is due to the lack of national law or standards to control the noise of domestic and also imported motorcycles. This study tries to introduce a practical limit value in different stage of motorcycle life cycle by assessing their noise pollution.
Materials and Methods: First the motorcycles noise standards at different countries were studied and they were compared with the results from noise level of 622 motorcycles in 3 different groups. The sample volume in each group corresponds to the amount of their annual production rate. Then using statistical tests, a limit was determined in which 90% of the domestic motorcycles can be covered. The limit is proposed as the standard for domestic motorcycle noise.
Results: The limit for motorcycles of groups 1, 2 and 3were 84, 86 and 87 dB (A) ,respectively in the TA stage. For the COP stage (Conformity of Production), the limit increases according to certain formula. In the end, a flowchart was proposed as a standard method for measuring the sound of motorcycles in the TA and COP stages was proposed.
Conclusion: Noise level of the domestic motorcycles is at least 9 dB (A) higher than the noise limit value of European motorcycle. If European limit value is considered for producing the national motorcycle, 90% of them will get out of production cycle and this would not be practical.


Mahran Mohammadian Fazli , Jalil Nassiri , Ramin Nabizadeh, Mohammad Reza Mehrasbi,
Volume 6, Issue 1 (5-2013)
Abstract

Backgrounds and Objectives: Medical waste management is one of the important issues in solid waste managment in each community. This research was carried out to study the quantity, quality and the management practices of solid wastes of hospitals in Zanjan City in 2011. Materials and Methods: In the present study, the hospital wastes were categoried and weighted into four main categories. Waste management pattern was studied based on a checklist extracted from national guidelines. Then, hospitals were ranked from very poor to excellent classes. For data analysis, Excel soft ware was used. Results: Waste generation rate was on average 2.402± 0.163 Kg/bed.day in the studied hospitals. The generation rate of domestic waste, infectious waste, sharp wastes, and chemical - pharmacological waste was 1.432±0.059, 0.926±0.096, 0.029±0.0055, and 0.015±0.002 kg/day.bed respectively. The status of the waste management practices was determined as average. Conclusion: Waste generation rate in the hospitals of Zanjan was lower compared with the expected average value in other cities (e.g. 2.71 Kg/bed.day in Tehran). The percentage of medical waste in Zanjan hospitals was 34, which is higher than W.H.O. recommendations. Therefore, it is strongly recommended to reform and monitor certain solid waste management practices in order to reduce health and environmental issues.
Mansoureh Hamidi, Parvin Nassiri, Homayoon Ahmad Panahi, Lobat Taghavi, Saeed Bazgir,
Volume 13, Issue 3 (11-2020)
Abstract

Background and Objective: Noise pollution is one of the serious environmental issue. Sound control technologies based on sound absorption and sound insulation are considered as the two widely used methods. Therefore, the aim of this study was to modify silica aerogel nanocomposites to improve its acoustic properties.
Materials and Methods:  This applied experimental research involved in examining eight various types of nanocomposites to evaluate their performance of acoustic properties. In this study, nanocomposites were synthesized by sol-gel method. For this purpose, TEOS and ethanol were added to SiO2 which subsequently stirred and diluted with ethanol as a precursor of silica sol. A solution of 5.5 M ammonium hydroxide is added drop-wise to the silica sol and then was stirred. The activated silica sol was quickly poured into the mold in which the samples were placed and finally placed in an oven at 150 °C for 3 hours. The acoustic properties of the samples were measured by the impedance tube and the reduction sound pressure level using a sound level meter. Each sample morphology was characterized by scanning electron microscopy.
Results: The sound absorption properties of as prepared nanocomposite relatively increased at high frequencies. The results indicated > 0.6 sound absorption coefficient by the modified nanocopmosites at higher frequencies. The sound absorption coefficient and transmission loss of D1 nanocomposite were higher at medium and low frequencies as compared to other nanocomposites. 4.6 and 9.73 dB average reduction of sound pressure level were achieved by either with or without nanocomposite enclosure, respectively, at a distance of 1 meter.   
Conclusion: The results of the current study showed that the simultaneous addition of organic and mineral materials to silica aerogels (especially with the highest amounts of nanoclay) improves its acoustic properties, especially at medium and low frequencies. Among the samples, D1 nanocomposite shows better acoustic properties at medium and low frequencies. The sound absorption coefficient of D1 nanocomposite at frequencies of 315, 400, 500, 1000, 1250, 2000 Hz were obtained as 0.27, 0.38, 0.51, 0.78, 0.83 and 0.84, respectively. The findings also indicated 9.37 dB reduction of sound pressure level using D1 nanocomposite.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb