Search published articles


Showing 2 results for Navidjouy

N Navidjouy, M Jalali, H Khorsandi, Hossein Movahedian,
Volume 7, Issue 1 (7-2014)
Abstract

Background & Objectives: Listeria bacterium resists to the sludge digestion conditions and Listeria monocytogenes is the most important of them. Sludge produced in the north Isfahan wastewater treatment plant is stabilized by anaerobic digesters and is used for fertilizing agricultural lands after drying in the sludge drying beds. Based on the importance of the subject, the objective of this study was evaluation of sludge processing units efficiency, particularly anaerobic sludge digestion for reduction or removal of Listeria. Materials and Methods: In this descriptive study, samples were collected weekly from sludge processing units 13 times in north Isfahan wastewater treatment plant according to standard methods over three months. Listeria bacteria were enumerated and isolated by triple-tube fermentation method and U.S Department of Agriculture method respectively. Isolated Listeria were confirmed by phenotypic method and then bacterial species were diagnosed differentially by biochemical carbohydrate fermentation and CAMP test. Results: Contamination of raw, stabilized and dried sludge at least to one of L. Monocytogenes, L. Innocua and L. Seeligeri species was 100, 92.3 and 53.8 percent respectively. Anaerobic sludge digesters efficiency to remove L. Monocytogenes, L. Innocua and L. Seeligeri species was determined 64.7, 39.72, and 100 percent while the efficiency of drying sludge beds for L. monocytogenes and L.innocua species removal was 73.4 and 96.68 percent respectively. Conclusion: Listeria monocytogenes is more resistant than other identified species against the sludge processing conditions. Thus, the use of sludge as fertilizer can cause the spread of this bacterium in the environment and agricultural products pollution.


Farah Rashadi, Nahid Navidjouy, Ali Ahmad Aghapour, Mostafa Rahimnejad,
Volume 14, Issue 3 (12-2021)
Abstract

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel cells in COD removal and bioenergy production from synthetic and real beverage wastewater.
Materials and Methods: In this research, a two-chamber microbial fuel cell with Nafion membrane and aerated  cathode was set up using two electrodes made of carbon felt and flat graphite after being contacted by synthetic wastewater with a concentration of COD 5000  mg/L and real beverage wastewater. Organic matter removal efficiency and voltage, power density and maximum current were determine.
Results: Experimental results showed that maximum COD removal efficiency of 92 % was achieved in synthetic wastewater and with a carbon felts electrode. In this condition, maximum voltage, power density and output current density of 469 mV, 175.28 mW/m2, and 855 mA/m2, were obtained, respectively. However, by using real industrial wastewater (beverage), maximum removal efficiency of COD, voltage, power density and output current density, related to carbon felt electrodes ‎were obtaines as 84 %, ‎460 mV, 91/65 mW/m2, and 635 mA/m2, respectively.
Conclusion: The findings showed that synthetic wastewater outperforms microbial fuel cells in terms of bioelectric production and organic matter removal as compared to real wastewater (beverage). The reason for the decrease in the cell performance might be the presence of solids and other confounding pollutants in real wastewater.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb