Search published articles


Showing 3 results for Nouri

M Mohammadian, J Nouri, N Afshari, J Nassiri, M Nourani,
Volume 1, Issue 1 (26 2008)
Abstract

Background and Objectives: Heavy metals processing industry has always been a major cause of concern which affects soils, surface waters, ground waters and river sediments contaminations. Thus, the Zanjan Zinc and Lead Smelting Plant has been considered as a potential source of contamination.
Mterials and Methods: This cross-sectional study has been conducted in February 2008 in the site region .The concentrations of Lead, Zinc and Cadmium have been assessed. The samples have been taken from 17 wells and atomic absorption spectrophotometeric method has been used to assess the samples. In order to find out and locate the exact situation of the wells under study, Global Positioning System instrument has been used. The correlation between the concentration of each metal and the distance of studied well from the plant has been assessed too.
Results: The findings of this study showed that lead and cadmium concentrations were 53% and 59% respectively out of the guideline values of World Health Organization.
Conclusion: The concentration of Zinc was lower than both national and international values in all samples. As the heavy metal concentration is very important for human health status, the other fields of study like heavy metal air pollution effects and related diseases and conditions should be studied and assessed.


M Jahangiri-Rad, R Nabizadeh, J Nouri, M Yunesian, F Moattar,
Volume 8, Issue 1 (8-2015)
Abstract

Background and Objective: Nitrate is one of the dissolved anions having great health importance in water. Human activities and natural sources are considered as the main roots of nitrate intrusion in to water bodies. The main objective of this paper was to study nitrate removal by packed bed column filled with (PAN)-oxime-nano Fe2O3. Materials and Methods: PAN-oxime-nano Fe2O3 were synthesized and used as an adsorbent in glass column for the removal of nitrate from aqueous solution. Nitrate solution tank was set above the prepared column. The effect of factors, such as flow rate (2, 5, and 7 mL/min) and bed depth (5, 10, and 15 cm) were studied. Results: It was found that the data fit well with Thomas model and breakthrough curve was designed accordingly. The column performed well at lowest flow rate. As the flow rates and time increased, earlier breakthrough was observed. The column breakthrough time (Ce/C0 = 0.05) was reduced from 9 to 4 h, as the flow rates increased from2 to 7 mL/min. Conclusion: fixed-bed using PAN-oxime-nano Fe2O3 exhibited good removal of nitrate. The adsorption studies showed that at longer bed depth, better removal of nitrate would be achieved. Thomas model was suitable for the normal description of breakthrough curve at the experimental condition. The data also were in good agreement with logistic regression.


M Nourinejad, N Arsalani, H Namazi,
Volume 10, Issue 1 (6-2017)
Abstract

Background and Objective: Nicotine as the most toxic alkaloid in tobacco is one of the compounds which causes human death over the past few decades. The purpose of this paper was to remove nicotine environmental pollution from aqueous solutions using halloysite-polythiophene nanocomposite. 

Materials and Methods: Halloysite-polythiophene nanocomposite was prepared using a homogeneous solution of HNT and FeCl3 at 0-5°C by the ball milling technique. In this study, parameters such as pH, contact time and initial concentration of nicotine in laboratory scale were studied and the physical properties of the adsorbent were characterized via fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Then, the absorption results were described using Langmuir and Freundlich isotherms.

Results: The results showed that the pH, initial concentration of nicotine and contact time had a direct effect on the nicotine adsorption process. The adsorption of nicotine followed Langmuir isotherm (R2 < 0/995). Moreover, the best adsorption result was achieved at pH=7, 50mg adsorbent, contact time of 90 min and 50mg/L of nicotine.

Conclusion: The results of this study showed that the Halloysite modification as a mineral composite with polythiophene and the synthesis of HNT@PTh nanocomposite can be used as an effective adsorbent to adsorb the nicotine.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb