Showing 27 results for Rahimi
M Mosaferi, H Taghipour, A Ostadrahimi, Sh Nazmara,
Volume 1, Issue 2 (10 2009)
Abstract
Background and Objectives: In the production of some high-consumed food products like cake, biscuit, chocolate and spaghetti water is used in the preparing of primary material and in the kneading processes. At the present study microbiological and chemical quality of consumed water in food industries of East Azerbaijan Province were studied.
Materials and Methods: Eleven factories with different products were selected. Water samples were collected and analyzed regarding the microbiological contamination and chemical parameters, and heavy metals. In addition, condition of water quality in selected industry was surveyed during the summer.
Results: According to the results, monitoring of water quality in the studied industries is not suitable. The chemical characteristics of consumed water in those industries had major differences. Ni, Cr, Zn, Fe and Mn were present in all analyzed water but in lower concentration than national Maximum Contaminant Level (MCL). Pb was measured in higher concentration than MCL in spaghetti factory no. 2 and close to MCL in wiener and frankfurter and sugar industries. Cd was close to MCL in spaghetti factory no. 2 and wiener and frankfurter industries.
Conclusion: It was concluded that for the safety and health of food products the food industries should use the public water supply system as water source at least in food processing units or in the units of preparing of primary materials. Also for the preventing of chemical pollution of food products it is necessary, pay more attention to the subject of water quality control according to the special water standard of food industries, and using less volume of water in some food industry isn.t acceptable reason for neglecting of water quality monitoring and assessing. In addition it is required to analyze heavy metals in the final products of those industries.
P Nassiri, M Monazam Esmaeelpour, A Rahimi Foroushani, H Ebrahimi, Y Salimi,
Volume 2, Issue 2 (16 2009)
Abstract
Backgrounds and Objectives: Noise in large cities is considered by the World Health Organization to be the third most hazardous type of pollution. Buses are an interesting object of study in the theme of noise pollution. They are at the same time a source of urban environmental (traffic) noise and occupational noise exposure source for drivers. The object of this study is Occupational noise exposure evaluation in drivers of bus transportation of Tehran city.
Materials and Methods: Noise levels in 90 buses were sampled in three separate sub-sample including (1)30 Ikaroos buses (2)30 Man buses (3)30 Shahab buses, which were selected by simple random sampling. Noise exposure level was normalized to a nominal 8-h working day (LEX, 8h). Simultaneous Octave Frequency Analysis were measured and sound intensity level (SIL) for bus drivers were calculated. Results, which are obtained from separate buses were compared together and too with standard levels.
Results: the normalized noise exposure levels (LEX, 8h) in Ikaroos bus drivers(82dB A) were higher than that of in in Man bus drivers (77/6dB A) and this Values were higher than that of in Shahab bus drivers(75dB A).SIL values for Ikaroos bus drivers were higher than other that of other bus drivers. Results obtained of Frequency Analysis showed that age of buses in mid frequencies ws a meaningful on noise increase.
Conclusion: Results showed that type and age of buses were effective factors in drivers. noise exposure levels (LEX, 8h), which was consistent with previous studies in this field.
M.t Samadi, M. H Saghi, M. Shirzad, J. Hasanvand, S. Rahimi,
Volume 3, Issue 1 (3 2010)
Abstract
Backgrounds and Objectives:In Iran , indicated that the municipal landfill leachate has been one of the major problem for environment. In the operations, leachate treatment is a very difficult and expensive process. Although, young leachate can be treated easily by biological treatment, COD removal efficiency are usually low due to high ammonium ion content and the presence of toxic compounds such as metal ions. Treatment of leachate is necessary.The aim of this study is reduction of Chemical Oxygen Demond (COD) and Total Suspended Solids (TSS) from hamedan city sanitary landfill leachate by three coagulants: alum, PAC and ferrous sulfate.
Materials and Methods: This experimental study was conducted to investigate the effect of treatment of landfill leachate by a coagulation-flocculation process. The effects of different amounts of coagulant and different pH values on the coagulation processes were compared.
Results:Result shown the high efficiency for reduction of CODby PAC in pH=12 and concentration of 2500(mg/l (62.66%), and by alum in pH=12 and concentration of 1000 (mg/l) (60%) , by ferrous sulfate in pH=2 and concentration of 1000 (mg/l) (70.62%). Also result shown the high efficiency for TSS removal by PAC in pH=12 and 2500(mg/l) concentration of PAC was 58.37%, with alum in pH=2 and 1500 (mg/l) concentration of alum was39.14% , by ferrous sulfate in pH=7 and 2500(mg/l) concentration of ferrous sulfate was 35.58%.
Conclusion:The best coagulant for COD removal is ferrous sulfate.The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates, prior to post-treatment (polishing) step for partially stabilized leachates.
R Fouladi Fard, A.a Ebrahimi,
Volume 3, Issue 4 (8 2011)
Abstract
Background and Objective: Nickel (II) and cadmium (II) are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment.
Materials and Methods: power of wasted activated sludge have been contact with nickel (II) and cadmium (II) solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study) samples were analyzed with atomic absorption spectrophotometer.
Results:The kinetic study results show that equilibrium adsorption time for nickel (II) and cadmium
(II) reached within 2 hr, but the profile curve of cadmium (II) biosorption was smoother than nickel (II) biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax) for nickel (II) and cadmium (II) was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II) at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM) adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration.
Conclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II) biosorption than nickel (II). Cadmium (II) in modeling and biosorption characteristics study had more conformity than nickel (II).
B Karimi, M.h Ehrampoush, M Mokhtari, A Ebrahimi,
Volume 4, Issue 1 (24 2011)
Abstract
Background and Objectives: Wet air oxidation (WAO) is One of the advanced oxidation process which reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substances and, solid waste leachate,etc. In this study the efficiency of wet air oxidation method in leachate treatment generating from Esfahan Composting factory was Evaluated.
Material and Methods: The experiment was carried out by adding 1.5 Lit of pretreated leachate sample the steel reactor with the volume of 3L. The reactor then underwent10 bar pressure at different temperature (100, 200 and 300 °C) and various retention time (30, 60 and 90 min). Leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 Lit was taken and the WAO method, was used for pre-treatments. Removal efficiency of COD, BOD, NH4-N, NO3 and TSS were examined.
Results: The results showed that the removal efficiency was more than 35% for COD, 38% for BOD, and 85% for TSS within one hour of reaction. The Maximum removal efficiency obtained in this study were 53.3% for NH4-N and 73.9 % forNO3-N.
Conclusion: the results indicate that the reaction temperatures are the most important factors affecting degradation of organic matter. COD and BOD5 removal efficiency by WAO process increased as the time of reaction went up. In addition, BOD5/COD ratios of the effluents, which are generally regarded as an important index of biodegradability of leachate sample, were determined and improved grately as it reached to 84%. TheWAO process presented in this paper is considered an efficient process for pretreatment of leachate, as the COD, BOD5 and NO3 reduction observed in leachate samples.
B Karimi, M.h Ehrampoush, M Mokhtari, A Ebrahimi,
Volume 4, Issue 2 (9 2011)
Abstract
Backgrounds and Objectives: Wet air oxidation (WAO) is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachate
Material and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sample to 3Lit autoclave reactor and adding 10 bar pressure at temperature of 100, 200 and 300 °C and pressure (10 bars) with retention time of 30, 60 and 90 min. leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 lit was taken and the three methodsWAO, WPO, and a combination of WAO/GAC were used for pre-treatments. Pure oxygen and 30% hydrogen peroxide was used as oxidation agent.
Results: The result shows significant improvement on the removal rate of COD (7.8-33.3%), BOD5 (14.7-50.6%)by WAO process.The removal efficiency of 4.6-34% COD, 24-50% BOD, was observed in the reactor.Adding theGACto the reactor improved removal efficiency of all parameters.Combination Process (WAO/GAC) removed 48% of COD, 31-43.6% of BOD.Combination process demonstrated higher efficiency than two other previous methods as BOD5/COD ratio of 90% achieved.
Conclusion: The WAO process presented in this paper is efficient for pretreatment of leachate, And the modified WPO process remove organic materials and ammonia moreover WAO/GAC can be considered as an excellent alternative treatment for removing reluctant organic matter (COD, BOD5) and organic nitrogen compounds, which found in leachate.
Negar Darvishzadeh, Farideh Golbabaee, Mohammadreza Pourmand, Farideh Zeini, Abbas Rahimi Foroushani,
Volume 6, Issue 1 (5-2013)
Abstract
Background and Objectives: Microorganisms are the agents that can cause disruption in the biochemical and physiological reactions through mechanisms such as infection, allergy or toxic properties in the case of entering human body and if the body’s immune system be unable to destroy and eliminate biological agents, illness and even death will occur. This study evaluates air pollution (aerosol and bioaerosol) in different parts of a hospital in Tehran.
Materials and Methods: We assessed and evaluated bioaerosols by applying 0800 NIOSH method using Bacterial sampler and specific cultures for bacteria and fungi separately in ICU (intensive care unit), Pathology laboratory, Operating room, Recovery, and CSR (Central Service Room) of a hospital.
Results: The assessment showed that the average density of bacteria in the hospital studied was in the range of 1226.88 - 294.47 CFU/m3 the highest density was observed in the CSR and the lowest density measured was in the operating room. The bacteria identified included gram-positive bacillus (50.6%), Staphylococcus epidermis (20.29%), Staphylococcus Saprophyticus (2.6%), Staphylococcus aureus (7.03%), other Staphylococcus (5.9%) and Micrococcus (13.43%). Moreover, it was found that the average density of fungi was in the range of 0-188.45 CFU/m3 the maximum density in ICU and the minimum density in operating room and recovery room. The fungi identified included Aspergillus flavus (31.65%), Aspergillus fomigatus (25.17%), Aspergillus niger (15.82%), and penicilliom (27.33%) .
Conclusion: Comparison of bacteria density in different parts of the hospital with the recommended limits of ACGIH (500 CFU/m3) showed that density exceeded the limits in all units except in operating room whereas, density of fungi was less than the recommended limits of ACGIH (100 CFU/m3) in all units of hospital.
T Rajaee, R Rahimi Benmaran, H Jafari,
Volume 7, Issue 4 (1-2015)
Abstract
Background & Objectives: The prediction and quality control of the Karaj River water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, performance of artificial neural network (ANN), combined wavelet-neural network (WANN), and multi linear regression (MLR) models were evaluated to predict next month nitrate and dissolved oxygen of “Pole Khab” station located in Karaj River. Materials and Methods: A statistical period of 11 years was used for the input of the models. In combined WANN model, the real monthly-observed time series of river discharge (Q) and the quality parameters (nitrate and dissolved oxygen) were analyzed using wavelet analyzer. Then, their completely effective time series were used as ANN input. In addition, the ability of all three models were investigated in order to predict the peak points of time-series that have great importance. The capability of the models was evaluated by coefficient of efficiency (E) and the root mean square error (RMSE). Results: The research findings indicated that the accuracy and the ability of hybrid model of wavelet neural network with the attitude of elimniations of time series noise had beeb better than the other two modes so that hybrid model of Wavelet artificial neural network wase able the improve the rate of RMSE for Nitrate ions in comparison with neural network and multiple linear regression models respectively, amounting to 35.6% and 75.92%, for Dissolved Oxygen ion as much as 40.57% and 60.13%. Conclusion: owing of the high capability wavelet neural network and the elimination of the time series noises in the prediction of quality parameters of river’s water, this model can be convenient and fast way to be proposed for management of water quality resources and assursnce from water quality monitoring results and reduction its costs.
F Mohammadi, S Rahimi, Z Yavari,
Volume 8, Issue 4 (3-2016)
Abstract
Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated.
Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN). Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized.
Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI) are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model. Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984) with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results.
Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be achieved.
B Nadalian, M Shahriari Mogadam, G.h Ebrahimipour, B Nadalian,
Volume 8, Issue 4 (3-2016)
Abstract
Background and Objectives: Organophosphate pesticides are used most commonly for domestic, commercial, and agricultural purposes and have been found to be highly toxic. In essence, bioremediation has become one of the most important tools for removing these compounds in the environment, considering its higher efficiency when compared with the physicochemical methods.
Materials and Methods: The biodegradation efficiency of two bacterial strains (i.e. Serratia marcescens BNA1 and Pseudomonas aeruginosa BNA2) were assessed. In order to evaluate Malathion biodegradation, each sample was cultured on mineral salts medium containing Malathion as a sole carbon source. Malathion biodegradation efficiency of the strains was monitored in different culture media. The ability of bacterial isolates to degrade Malathion was studied using gas chromatography.
Results: Serratia marcescens BNA1 and Pseudomonas aeruginosa BNA2 were able to degrade Malathion. Biodegradation percentage in different treatments recorded were: BNA1+Ma (33.88%), BNA2+MA (26.45%), BNA1+BNA2+Ma (46/96%), BNA1+Ma+Tween (61.05%), BNA2+Ma+Tween (40.17%), and BNA1+BNA2+Ma+ Tween (67.79%).
Conclusion: It could be speculated that the best degradation efficiency can be yielded using mixture of strains plus a surfactant. The results of this study can be used in the bioremediation of Malathion contaminate soil after doing the pilot experiments.
A Ebrahimi, M.h Ehrampoush, H Hashemi, M Dehvari,
Volume 9, Issue 1 (6-2016)
Abstract
Background and Objective: Predicting municipal solid waste generation has an important role in solid waste management. The aim of this study was to predict municipal solid waste generation in Isfahan through time series method and system dynamics modeling.
Materials and Methods: Verified data of solid waste generation was collected from Waste Management Organization and population information was collected from the National Statistics Center, Iran for the period 1996-2011. Next, the effect of factors on solid waste generation such as population, urbanization, gross domestic product was investigated. Moreover, the relationship between each of these factors was identified using generalized estimating equation model. Finally, the quantity of the solid waste generated in Isfahan city was predicted using system dynamics modeling by Vensim software and time series method by ARMA technique.
Results: It was found that population and gross domestic product have a significant relationship with the amount of solid waste with P value 0.026 and 0 respectively. The annual average of municipal solid waste generation would be 1501.4 ton/day in 2021 estimated by the time series method and 1436 ton/day estimated by the system dynamics modeling. In addition, average annual growth rate achieved was 3.44%.
Conclusion: According to the results obtained, population and gross domestic product have a significant effect on MSW generation. Municipal solid waste generation will increase in future. Increasing solid waste is not the same in different areas and methods. The prediction of the time series method by ARMA technique gives precise results compared with other methods.
M Jalili, M Mokhtari, Aa Ebrahimi, F Boghri,
Volume 9, Issue 3 (12-2016)
Abstract
Background and Objective: About 1.35×105 tons of pistachio waste are produced in annually Iran that can result in environmental problems if managed improperly. . The purpose of this study was to investigate in-vessel composting of pistachio residuals with addition of cow manure and dewatered sludge as a recycling alternative.
Materials and Methods: Pistachios wastes were combined with weight ratio of 5.5:10 (dewatered sludge: pistachio waste) and weight ratio of 1:10 (Cow manure: pistachio waste) to achieve the carbon to nitrogen ratio of 25:1. The parameters measured were pH, EC, percentage of moisture, total and volatile solids, ash, organic carbon, temperature, and phenol. The 20th edition of SPSS software was used for t-test statistical analysis and comparing the results with standards and Microsoft Excel 2007 was used for drawing the plots.
Results: During the 60-days process of in-vessel composting of pistachio residuals with addition of cow manure, the ratio of carbon to nitrogen reduced from 25:1 to 13:1, dewatered sludge from 25:1 to 14:1; phenol amount in cow maneuver decreased from 4980 to 254 ppm and in dewatered sewage sludge from 6100 to 254 ppm. The maximum temperature in cow manure and dewatered sewage sludge treatments in the composting process reached to 51.9 and 48.9 ˚C respectively.
Conclusion: Results showed that the produced compost with cow manure has a higher fertilizing value compared with the dewatered sewage sludge due to its better organic degradation.
M Ahmadi-Pirlou, M Ebrahimi-Nik, M Khojastehpour, Sh Ebrahimi,
Volume 9, Issue 4 (3-2017)
Abstract
Background and Objective: Solid waste management has always been one of the major challenges of large cities. Conversion of waste to energy in the form of biogas is known to be an appropriate solution. The aim of this study was to investigate the effect of total solids (TS) content and alkaline pretreatment on biogas production from municipal solid waste (MSW).
Materials and Methods: Experiments were done in 1 L glass bottles at 37 °C with different TS contents (5, 10, and 15%), each in 3 replications based on a completely randomized design. Comparison of means was used for interpretations of the result. The volume of the produced biogas, the amount of methane, and changes in pH were measured on a daily basis. In order for better mixing, the digesters were manually shaken for 30 seconds every day. TS, volatile solids (VS), carbon and nitrogen of the feedstock were determined according to APHA standard methods.
Results: The highest methane yield and VS reduction was observed in 5% TS. Therefore, this TS was chosen for alkaline pre-treatment. The results showed that pre-treatment with NaOH significantly improved biodegradability of MSW. In 25 days, the production of biogas was 30.38% higher than that of the untreated digester. The highest methane yield was 83.35 mL/g TS and 132 mL/g TS from the control and the pretreated digesters, respectively.
Conclusion: The results of the lab experiments showed that the TS of 5 % and the alkaline pre-treatment, significantly improved biodegradability of MSW and consequently increased biogas and methane yield.
H Adab, A Atabati, R Esmaili, Gh Zolfaghari, M Ebrahimi,
Volume 10, Issue 1 (6-2017)
Abstract
Background and Objective: Optimum number of air quality monitoring stations in Mashhad is an essential task for management of the urban environment. However, real monitoring and accurate information on the status of air quality require proper spatial distribution of air quality monitoring stations in the city of Mashhad. The aim of the present study was to determine optimum site locations for air quality monitoring, including Downtown Pedestrain Exposure Station, Downtown Background Exposure Station, and Residential Population Exposure Station by three Multiple-Criteria Decision-Making (MCDM) techniques.
Materials and Methods: In the precent study, sites for new air quality monitoring stations t in Mashhad were determined based on a proposed protocol in the United States. Accordingly, the criteria effective for site selection such as population density, distance from existing stations, vicinity to vegitation, vehicle density and other factors were used by applying Analytic Hierarchy Process (AHP), Fuzzy set, and Probability Density Function (PDF).
Results: Location similarity of the sites proposed by decision making methods was evaluated to know its reliability. The compactness of distribution of the proposed sites were compared by applying spatial statistic methods auch as Average Nearest Neighbor (ANN) and Standard. The results from ANN indicated that fuzzy set mapped the suggested sites was fully scattered within the entire city of Mashhad and was statistically significant at 99% confidence level. The PDF method also offered the same spatial pattern as fuzzy set. Overall results of this study indicated spatial optimization of suggested sites location for fuzzy set and PDF.
Conclusion: The overall results of the decision-making methods used in this study indicated that it is necessary to increase number of air quality monitoring stations at Northwest of Mashhad due to the urban growth in the city. The results also showd the possibility of using Probability Density Function (PDF) as a method of decision-making in GIS for locating and ranking of new air quality monitoring stations.
Ma Ebrahimi-Nik, S Ghanbari Azad Pashaki, M Khojastehpour, A Rohani,
Volume 11, Issue 2 (9-2018)
Abstract
Background and Objective: In recent years, management and disposal of municipal solid waste has become a global problem and the most important environmental concern. Anaerobic digestion is a cost-effective solution for treatment of both solid waste and wastewater. The aim of this study was to investigate the positive or negative effects of calcium chloride content in anaerobic digestion process of municipal solid waste and leachate on biogas production.
Materials and Methods: Experiments with 8 levels of calcium chloride on co-digestion of municipal solid waste and leachate were investigated in 500 ml digesters under mesophilic conditions in a completely randomized design with three replications. Reactors with a ratio of substrate to inoculum of 2 (on VS basis) were operated and the volume of the biogas was measured daily. Volatile and total solids, carbon/nitrogen of waste, COD, BOD and heavy metals were measured by following APHA.
Results: The results of the experiment showed that the pH was decreased with increasing calcium chloride concentration. The highest amount of cumulative biogas production was obtained in CaCl2 of 2 g/L with the highest VS and TS reduction. Higher concentrations of CaCl2 (≥3 g/L) caused a reduction in the degradability of volatile and total solids and, as a result, a decreased performance of the digester.
Conclusion: The results clearly confirmed that the addition of calcium chloride was an effective solution to improve biodegradability in co-digestion of the MSW and leachate and consequently to reduce the total and volatile solids and to increase the amount of biogas.
R Salmasi, A Behbahaninia, Ar Ostadrahimi,
Volume 12, Issue 2 (9-2019)
Abstract
Background and Objective: Heavy metals fixation in-situ by using inorganic amendments is a method for immobilization of polluted soils. The goal of this research was to determine efficiency of five amendments for heavy metals fixation of waste-water-irrigated soils around Tabriz city.
Materials and Methods: Cadmium, Pb, Cu, Ni, and Zn- containing solutions were added to 0.5 gram of five amendments including calcite, hematite, zeolite, illite, and bentonite. 10 soil samples from around of Tabriz city were taken. After shaking the samples, the concentrations of the five elements were determined in the filtered solution by using atomic absorption instrument. Retention capacity percentages of these elements were calculated, and the best amendments were determined by using Dunkan method.
Results: There were differences of heavy metals retention between amendments. Calcite had the highest retention of Cd (91%), Ni (78%), and Zn (94.7%); hematite had the highest Cu (90.5%) and Pb (94.3%); and illite showed the lowest retention of the 5 elements. Calcite, zeolite, bentonite, and hematite had significant higher retention capacities of Cd, Ni, and Zn in compared to 10 the soil samples.
Conclusion: Among the studied amendments, retention capacities of calcite and hematite for the five elements were higher than the remaining ones for addition to the soil. These two amendments can cause low uptake and low accumulation of the elements in agricultural crops in polluted soils.
R Dehghan, S Abdolahi, M Rahimi, F Nejad Koorki, M Amini,
Volume 12, Issue 3 (12-2019)
Abstract
Background and Objective: Due to the increasing growth of urbanization, vehicles are one of the most important environmental causes of air pollution in today's world.. With the increasing problems of air pollution and its environmental consequences due to lack of compliance with standards in manufacturing cars and their fuel consumption, awareness of the exhaust of cars and its comparison with environmental protection standards and technical examination is essential for controlling and reducing air pollution. Therefore, the present study was carried out with the aim of studying and comparing the amount of CO, CO2 and HC emissions from light vehicle exhausts in the period of 1383-1389 based on technical and environmental inspection standards in Shiraz. Also, the relationship between the year of construction of the car and the amount of output of these pollutants was discussed.
Materials and Methods: In this research, the amount of exhaust emissions (carbon monoxide, carbon dioxide and uncured hydrocarbons) from the exhaust of 858 vehicles included models Peugeot 206, GLX and Pars that were referred to the technical examination center during 5 months in Shiraz between the years 1383-1389 was investigated. Also, the relationship between the year of production and the amount of output of these pollutants was studied. Data analysis was done using SPSS software and Microsoft Excel software was used for drawing graphs.
Results: The results showed that there was a significant and negative correlation between the year of manufacture of the vehicle and the reduction of CO and HC. As the year of construction increases, the amount of pollutants is decreasing. Also, this relationship was positive and significant between the year of manufacture and CO2. Also, the exhaust pollutants (CO and CO2) from the Peugeot GLX exhaust system were lower than Peugeot Pars and 206, and the lowest amount of HC was observed in Peugeot 206.
Conclusion: In general, the exhaust emissions of all three cars were at the standard Euro 2 and technical examination.
Faezeh Kamal, Reza Fouladi Fard, Azam Sabahi Hoveida, Zabihollah Gharlipour, Nayereh Rezaie Rahimi,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: The most important first step in promoting environmental performance is identifying and evaluating environmental behavior. In this regard the measuring tool is considered an environmental behavior questionnaire. Validity and reliability of the questionnaire before its application is essential. Thus this research was conducted with the aim of assessing the validity and reliability of questionnaires.
Materials and Methods: The environmental behavior questionnaire containing 36 questions was designed using the literature review and expert panel opinions. Then, the validity of the questionnaire was assessed by content validity index (CVI) and content validity ratio (CVR) and its reliability was evaluated using Cronbach's alpha coefficient by 14 experts and 40 target groups. Finally, data were analyzed by SPSS 20 software.
Results: The results showed that the questionnaire with 36 items had CVI and CVR of 0.896 and 0.726, respectively, and 4 items should be excluded from the questionnaire due to non-compliance with content validity indices. The questionnaire exhibited high internal consistency and hence was acceptable owing to the Cronbach's alpha coefficient of 0.85.
Conclusion: The questionnaire was designed to evaluate environmental performance of citizens and can be cited in future studies.
Moslem Rahimi, Maryam Mohammadi Rouzbahani, Khoshnaz Payandeh, Ahad Nazarpour, Ebrahim Panahpour,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: Due to the spread of dusty air and the transfer of these particles to the cities of Khuzestan province, it is very important to study the status of these particles in terms of heavy metal pollution and their pollution status.
Materials and Methods: In this study, the concentrations of Cr, Cu, Zn, Pb, Ni, Mn, Mg and Fe in the air of 4 cities of Khuzestan province (Ahvaz, Dezful, Mahshahr and Abadan) in dusty and dust-free conditions over a period of 9 months (autumn, winter and spring) were measured in 2018-2019. Due to the spread of dusty air and the transfer of these particles to the cities of Khuzestan province, it is very important to study the status of these particles in terms of heavy metal pollution and their pollution status.
Results: 48 samples in contaminated conditions and 48 samples in non-contaminated conditions were collected at the specific points and exact times using a High Volume sampling pump with a flow rate of 110 L/min for 6 hours. Metal concentrations were measured using ICP. Except for Ni, Mn and Mg, the mean concentration of other studied metals were higher at dusty conditions as compared with their values in non-dusty conditions (p < 0.05). In dusty and non-dusty air conditions the order of heavy metals based on their concentrations were obtained as following: Zn> Mg> Mn> Ni> Cr> Pb> Fe> Cu and Mg> Mn> Ni> Pb> Fe> Cr, respectively. This result shows that the origin of zinc and copper metals and the increase in chromium concentration in polluted air are due to the entering of dust and pollution transfer from the outside area into cities. The cities of Ahvaz, Dezful, Mahshahr and Abadan were highly enriched in terms of heavy metals pollution either in dusty or non-dusty conditions.
Conclusion: The findings of this study showed that despite low concentration of heavy metals in airborne dust particles in clear and dusty air, high health risks of metals such as zinc in cities of Khuzestan province, especially Mahshahr are probable. Further investigation showed that particles are generally derived from intra-city or provincial activities, which call for more attention due to the drought conditions that attributes to more dust formation.
Alireza Rahimi, Nabi Shariatifar, Ali Heshmati,
Volume 14, Issue 3 (12-2021)
Abstract
Background and Objective: The Pesticides used in agriculture have caused great concern due to their adverse effects on human health. In this study, the effect of rinsing, crushing, filtering, clarifying with bentonite and pasteurization on the reduction of diazinon, ethion and phosalone during Asari grape juice was investigated.
Materials and Methods: Vineyard was sprayed during three growth stages before flowering, sour grape (ghooreh) and during grape ripening with phosalone, diazinon, ethion and in doses of 525, 600, 750 g of active substance per hectare, respectively. Twenty-four hours after the last spraying step, the grape sample was harvested and exposed to the process of rinsing (20-30 s), crushing, filtering, clarifying and pasteurizing. Then, the pesticides residue concentration was determined after each step by GC-MS/MS.
Results: The initial concentrations of diazinon, ethion and phosalone in unprocessed grape samples were 0.640, 0.716 and 0.550 mg/kg, respectively. The reduction values of diazinon during the juicing processes of rinsing, crushing, filtering, clarifying with bentonite and pasteurization, in comparison with the concentration of unprocessed grapes, were 25.72, 41.96, 74.54, 90.21 and 100% (not found), respectively; while these values were 9.78, 28.50, 69.45, 89.38 and 96.74% for ethion and 17.32, 28.47, 46.40, 80.25, 93.28% for phosalone, respectively. All processes significantly reduced insecticides residue.
Conclusion: Findings showed that the processes of grape juice production could significantly decrease the diazinon, ethion and phosalone residues.