MicrosoftInternetExplorer4
Background and Objectives:The poor accessibility of microorganisms to PAHs in soil has limited success in the process of
bioremediation as an effective method for removing pollutants from soils.
Different physicochemical factors are effective on the rate of biodegradation.
The main objective of this study is to assess effects of nutrient and salinity
on phenanthrene removal from polluted soils.
Materials and Methods:The
soil having no organic and microbial pollution was first artificially polluted
with phenanthrene then nutrients and salinity solution in two concentrations
were added to it in order to have the proportion of 10% w:v (soil: water).
After that a microbial mixture enable to degrade phenanthrene was added to the
slurry and was aerated. Finally, the residual concentration of Phenanthrene in
the soil was extracted by ultrasonic and was analyzed using GC. We measured the
microbial populationusing MPN test. This study was conducted based on the two
level full factorial design of experiment.
Results: MPN test
showed that the trend of microbial growth has experienced a lag growth. The
full factorial design indicated that nutrient had the maximum effect on
bioremediation the rate of phenanthrene removal in the maximum nutrients -
minimum salinity solution was 75.14%.
Conclusion: This study
revealed that the more nutrient concentration increases, the more degradation
will be happened by microorganisms in the soils. However, salinity in the
concentration used had no effect on inhabitation or promoting on the
Phenanthrene removal.