Search published articles


Showing 13 results for Saeedi

Mohaad-Reza Mohebbi, Koshyar Azam Vaghefi, Ahmad Montazeri, Mehrnoosh Abtahi, Sogol Oktahi, Reza Gholamnia, Fatemeh Aliasgari, Reza Saeedi,
Volume 6, Issue 2 (9-2013)
Abstract

Background and objectives: In this research, an innovative drinking water quality index for assessing water resources as “modified drinking water quality index (MDWQI)” was developed and applied for evaluating all of the groundwater resources utilized for community water supply in urban areas of Iran during 2011. Materials and methods: Twenty-three water quality parameters and relevant Iranian standards for drinking water quality were selected as input parameters and benchmarks respectively. The MDWQI is calculated using three factors including the number of parameters that excurse benchmarks, the number of measurements in a dataset that excurse benchmarks and the magnitude of excursions. The MDWQI scores range from 0 to 100 and classify water quality in five categories as excellent (95-100), good (80-94), fair (65-79), marginal (45-64), and poor (0-44). Results: According to the MDWQI value, about 95% of the groundwater resources were in the good condition and the others were in the fair or marginal condition also the best and the worst water quality of water resources were observed in Ardebil Province and Qom Province respectively. The three parameters of fluoride, magnesium, and nitrate recorded the highest rates of violation to be 74, 32, and 13% respectively. Conclusion: The nationwide average score of the MDWQI was 85 (good description). This study indicated that the MDWQI and its sub-indices could describe the overall water quality of water bodies easily, reliably and correctly and have the potential suitability for extensive application all over the world.


Marzieh Razavi, Mosen Saeedi, Ebrahim Jabaari,
Volume 6, Issue 3 (12-2013)
Abstract

Background & Objectives: In this study, treatability of wastewater from a laundry unit was investigated by applying electrocoagulation method in which two pairs of aluminum and iron electrodes were utilized. Electrocoagulation is a noble treatment method suitable for different kinds of wastewater which has been given a considerable attentions by researchers recently. Applying direct current to two or several suitable metallic electrode in a batch reactor containing effluent would result in flocks of metal hydroxide. Materials & Methods: We studied the effect of different operational parameters such as pH, electrodes distance, intensity of electrical current, and type of electrodes on the treatment efficiencies. Results: Aluminum electrodes showed better effects on the treatment efficiencies in nitrate and COD removal. Maximum phosphate removal (99.93%)took place at pH=7 using Al electrodes. Whereas, in the case of iron electrode, maximum nitrate and COD removal efficiencies were about 97.60 and 80% at pH=9 and pH=6 respectively. Operational cost analysis showed that the corresponding costs of Al application as an electrode is different from that of iron electrode application. Conclusion: Although application of both iron and aluminum electrodes lead to obtaining considerable removal phosphate, nitrate and COD, iron electrodes could result in reasonable removals to meet Environmental Standards with lower operational costs.
M Abtahi, K Naddafi, A.r Mesdaghinia, K Yaghmaeian, R Nabizadeh, N Jaafarzadeh, N Rastkari, R Saeedi, Sh Nazmara,
Volume 7, Issue 4 (1-2015)
Abstract

Background and objectives: Dichloromethane (DCM) is one of the hazardous contaminants of the environment, especially ambient air that threatens human health at both acute and chronic exposures. In this study, the performance of a pilot-scale hybrid bubble column/biofilter (HBCB) bioreactor was studied for the removal of DCM from waste gas streams at steady state. Materials and methods: The experiments were conducted in four stages with relatively constant concentrations of DCM (approximately 240 ppm) and variable empty bed residence time (EBRT) of 50, 100, 150 and 200 s. In addition to determining DCM removal rate and efficiency, quality parameters of mixed liquor of the bubble column bioreactor were studied and kinetic of biofiltration was analyzed. Results: The average DCM removal efficiency of the HBCB bioreactor at EBRT of 200 and 150 s were 79 and 71% respectively. However, further reduction of EBRT resulted in significantly decreased DCM removal efficiency, so that at EBRT of 50 s, the DCM removal efficiency decreased to 32%. In addition, the EBRT reduction from 200 s to 50 s through increasing DCM loading rate resulted in increasing DCM removal rate from 12.1 to 19.6 g/m3.h. The results of kinetic analysis showed that the kinetic data of biofiltration were in the best fitness with the first order rate equation (R2>0.99 and &epsilon%<2.2) and the DCM removal rate constant was determined 0.0114 s-1. The mixed liquor characterization indicated that the daily adjustment of pH and EC was sufficient to prevent any limitation in the performance of the HBCB bioreactor. Conclusion: This study indicated that the DCM removal rate and efficiency of the HBCB bioreactor were relatively high and the HBCB bioreactor had reliable performance during the variable operational conditions.


M Rastegari, M Saeedi, A Mollahosseini,
Volume 8, Issue 2 (8-2015)
Abstract

Background & Objectives: Polycyclic aromatic hydrocarbons (PAHs) are considered as important organic contaminants due to their high toxicity and carcinogenic properties. Among PAHs, phenanthrene is found in most contaminated sites. Sorption and desorption of phenanthrene in soil affect the fate of the contaminant in soil-water system. Presence of organic matter (OM) in the soil matrix can also affect sorption and desorption of phenantherene. In this research, effect of soil organic matter on sorption of phenanthrene in kaolin soil was studied. Materials & Methods: The sorption of sorption of phenanthrene in kaolin clay was assessed in the presence and absence of organic matter. These two soil types were used in batch sorption experiments of Phenanthrene to determine the sorption properties. Results: It was found that organic matter increases the cation exchange capacity, water content, and pH of the soil. Sorption of phenantherene in both kaolin and OM-added kaolin was better fitted with Freundlich linear model. Moreover. soil organic matter increased phenanthrene sorption in soil. Conclusion: It was observed that with 41.04% increase in OM, distribution coefficient of phenanthrene sorption in soil increased by 36.69%.


K Naddafi, A Beiki , R Saeedi, G Ghanbari, A Niati, L Sori,
Volume 8, Issue 3 (12-2015)
Abstract

Background and objectives: In the outbreak of infectious diseases, the on time epidemiological, environmental, and laboratorial investigations result in rapid diagnosis of cause and source of the outbreaks and decrease the diseases spread and public health loss. Following the outbreak of gastroenteritis in Pardis Town in January 2014, this research was conducted to identify the cause, source, and route of transmission of the outbreak.

Materials and methods: First, the descriptive epidemiological study was conducted using checklist and the stool samples were prepared and analyzed. The drinking water quality in Pardis during and before the outbreak was obtained from National Environmental Health Network. The community water supply system consisting of watershed, water resources, pipelines, storage reservoirs, disinfection systems, and distribution network were inspected and sampling and detection of thermotolerant coliforms and norovirus in water samples were performed according to the Standard Methods.

Results: There were 6,027 patients with symptoms of nausea, vomiting, cramps, mild diarrhea, and mild fever. The distribution of the disease in all age groups, gender, ethnicity, and location was uniform. Out of nine stool specimens, molecular testing of norovirus in six samples was positive. Hazards identified in the water supply system consisted of a water pipe fracture occurred two days before the outbreak, illegal connection of landscape irrigation system to the drinking water supply network, the use of unprotected Fellman wells as the resource of water supply, and discharge of domestic wastewater into the water resource upstream of the Fellman wells. The water samples taken from the Fellman wells had fecal contamination (11 out of 12 samples), but because of weakness and limited experience in identifying norovirus in water samples, norovirus was not detected in the raw water samples.

Conclusion: This study showed that the pathogen came from a single source. Clinical symptoms, epidemiological evidence, the results of analysis of human stool samples,  fecal contamination of raw water samples and norovirus resistance to the standard amounts of  free residual chlorine in water indicated that the outbreak caused by consumption of contaminated drinking water (discharge of domestic wastewater to water supply system). In order to prevent similar outbreak, resolving the observed bugs in the water supply system and implementation of water safety plan is recommended.


A Beiki, M Yunesian, R Nabizadeh, R Saeedi, L Sori, M Abtahi,
Volume 9, Issue 1 (6-2016)
Abstract

Background and objectives: Swimming is one of the most popular sport fields and entertainments that has considerable benefits for human health, but on the other hand microbial water contamination in swimming pools through transmission and spread of infectious diseases is a significant threat against public health. In this study, microbial water quality of all public swimming pools in Tehran were assessed and effective factors on microbial water quality were analyzed.

Materials and Methods: This cross-sectional study with the analytical approach was performed in 2013. The whole public swimming pools in Tehran were inspected and water samples were taken for measurement of microbial indicators including thermotolerant coliforms, heterotrophic plate count (HPC), and physicochemical parameters affecting the microbial water quality including turbidity, free residual chlorine and pH and an integrated swimming pool microbial water quality index were used to describe the overall situation. Operational parameters with probable effects on microbial water quality were checked through inspection using a checklist.

Results: The assessment of the swimming pool microbial water quality indicated that the compliance rates of thermotolerant coliforms and HPC were 91.4 and 84.5%, respectively. Compliance rates of free residual chlorine, turbidity, Ph, and temperature were also obtained to be 82.7, 45.5, 85.6, and 65.4% respectively. Based on the integrated swimming pool microbial water quality index, the proportions of swimming pools with excellent and good microbial water quality were 39.6 and 50.4% respectively and the others had not proper microbial water quality. The parameters of water free residual chlorine and turbidity, swimmer density, water recirculation period, dilution amount, cleaning, usage rates of shower and disinfection basin and operation of water treatment systems had significant effects on the microbial indicators (P<0.05).

Conclusion: The study showed that the overall microbial water quality status of public swimming pools in Tehran was acceptable and analysis of the results determined the most efficient interventions for improvement of the microbial water quality of the pools.


A Misaghi, M Saeedi, N Noori, Mr Rezaeigolestani,
Volume 11, Issue 1 (6-2018)
Abstract

Background and Objective: Natural antimicrobial compounds have a valuable capacity to be used in a variety of foods to inhibit growth of foodborne pathogens and spoilage bacteria. The aims of this study were to produce active biodegradable films by incorporation of different percentage of oregano essential oil (OEO) and ethanolic extract of propolis (EEP) into poly-lactic acid (PLA) films, and to evaluate physical and antimicrobial properties of the resulting films. 
Materials and Methods: The active films were produced by solvent casting method, and their thickness and major color parameters were measured using a digital micrometer and a colorimeter instrument, respectively. Afterwards, antibacterial effects of the films were assessed against four common foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus and Listeria monocytogenes, by means of disk diffusion test.
Results: Physical examinations showed that thickness of resultant films significantly was increased (p<0.05) by addition of different concentrations of active agents. Additionally, the presence of them in the structure of films decreased the lightness and increased the redness and yellowness, simultaneously.  While none of the neat PLA film or films with just EEP had no antibacterial effect, all films containing higher percentages of OEO (5 and 10%) were effective against all four tested bacterial strains, and these effects were more significant in case of the gram-positive bacteria. The maximum inhibition zone was recorded for the film containing 10% of OEO and 2% of EEP, which the relevant values were 56.66, 45.46, 17.91 and 17.65 mm for Staphylococcus aureus, Listeria monocytogenes, Vibrio parahaemolyticus and Escherichia coli, respectively.
Conclusion: Based on the findings of this study, the presence of just EEP in the initial formulation of poly-lactic acid films was not effective against the four tested foodborne pathogens, while the addition of this compound to the films containing OEO increased the effective antibacterial properties of the resulting films. As a result, the simultaneous use of these two compounds in the structure of hydrophobic films, such as poly-lactic acid film, can be used to produce active food packaging films.
 

K Naddafi, A Mesdaghinia, M Abtahi, Ms Hassanvand, R Saeedi,
Volume 12, Issue 2 (9-2019)
Abstract

Background and Objective: Environmental burden of disease (EBD) studies are one of the most important needs for determining the current situation, increasing the effectiveness of health policies and programs and prioritizing environmental health interventions. This review article was evaluated the status of the EBD in Iran based on the results of the latest Global Burden of Disease (GBD) Study, other international studies and national estimates in the country.
Materials and Methods: In this study, the researches on the EBD in Iran were identified by searching in the international and national scientific databases and the search results were studied and analyzed.
Results: The review of the EBD studies showed that based on the results of the GBD study, the share of environmental risk factors in the total burden of diseases in the country in 2017 according to the disability-adjusted life years (DALYs) and deaths were about 8 and 13%, respectively. According to the results of the GBD study, the contributions of environmental risk factors in the attributable DALYs in the country in 2017 (a total value of 1,648,329) were as follows: ambient air PM2.5 for 45.0%, occupational risk factors for 25.1%, exposure to lead for 19.4%, unsafe water source for 5.0%, tropospheric ozone for 1.7%, lack of access to handwashing facility for 1.5%, unsafe sanitation for 1.4%, residential radon for 0.6%, and household air pollution from solid fuels for 0.3%. The total DALY rate and death rate attributable to solar ultraviolet radiation in Iran in 2000 were estimated to be 46.2 and 0.7, respectively. The DALY and the DALY rate attributable to elevated levels of fluoride in drinking water due to dental fluorosis in the country in 2017 were 3,443 and 4.14, respectively. The evaluation of the effect of water fluoridation as an environmental protective factor showed that the intervention by reducing the risk of dental caries could fall the DALY and DALY rates in the country by 14,971 and 18.73, respectively. In the period of 2005-2017, the DALY rate (per 100,000 people) attributable to ambient air PM2.5, tropospheric ozone, residential radon, and occupational risk factors rose that the result increases the importance of the preventive measures and controls of these risk factors.
Conclusion: There was a considerable difference in the burden of disease attributed to each risk factor in various international studies as well as between national and international studies. The results of national studies on the burden of diseases attributable to environmental risk factors are considered to be more reliable and practical due to the application of more detailed data and conducting subnational evaluations; therefore, the strengthening and continuing these studies at the national and sub-national levels with regard to priorities, needs, and spatiotemporal trends using domestic reliable data and information are necessary and strictly recommended.
 

Mansour Shamsipour, Homa Kashani, Masud Yunesian, Kazem Naddafi, Mohammad Sadegh Hassanvand, Reza Saeedi, Mahdi Hadi, Alireza Mesdaghinia,
Volume 13, Issue 2 (8-2020)
Abstract

Background and Objective: In this study, we aimed to assess Iran’s position and trends for environmental health status among the countries of “Iran’s perspective document in 1404” according to the indicators used in Environmental Performance Index (EPI) report in 2018.
Materials and Methods: The score of indicators in environmental health area; air quality (including household solid fuels, exposure to PM2.5, and PM2.5 exceedance), water and sanitation (including drinking water and sanitation) and heavy metals (including lead) were extracted for all studied countries as well as for the last and baseline (generally ten years prior to last report) years from EPI 2018 database. According to EPI scores, the performance of the studied countries in each indicator was ranked. The percent change in the score of each indicator from baseline to current year was calculated and compared with the mean percent change for all studied countries.
Results: Iran ranked 7th regarding air quality in 2016. Also, it ranked 6th, 8th, and 9th in terms of household solid fuels, exposure to PM2.5, and PM2.5 exceedance, respectively. The EPI score for Iran regarding water and sanitation was 54.4 in 2005 and 58.74 in 2016 (percent change=7.98%). Iran ranked 21st in 2005 regarding lead exposure index. Although this index showed a growth of 100% in 2016, which is very desirable compared to the average growth of all countries (34.47%), but only leads to one step up in the ranking of Iran and was ranked 20th in comparison with other countries.
Conclusion: Totally, according to EPI 2018, Iran ranked 6th in the field of environmental health issues among 23 countries of “Iran’s perspective document in 1404”. However, there is uncertainty in the accuracy of the EPI raw data used for calculating index scores. Hence, caution should be exercised in their interpretation.

Mehrnoosh Abtahi, Mahmood Alimohammadi, Reza Saeedi, Ramin Nabizadeh, Masoomeh Askari, Babak Mahmoudi, Maryam Ghani,
Volume 14, Issue 2 (9-2021)
Abstract

Background and Objective: The aim of this study was to evaluate the chemical and microbial quality of bottled water in Iran and to calculate the water quality index (WQI).
Materials and Methods: Different brands of bottled water (4 samples from 71 brands) were randomly collected from the market. Chemical and microbial characteristics of the samples were examined and determined. Finally, the calculations related to the WQI index were performed and the water samples were classified as excellent, good, poor, very poor and unsuitable.
Results: None of the samples exhibited concentration of heavy metals beyond Iranian water standards, and the concentration of sulfate (SO4), chloride (Cl) and fluoride (F) did not exceed international standards. However, in some samples, nitrite (NO2) and nitrate (NO3) concentrations were higher than recommended standards. With Regard to other water quality parameters, 8% to 89% of the samples exhibited concentration higher than the values provided on the water bottle label. 5 species of different bacteria were found in 15 water samples. According to the WQI index, about 63% of the samples were of excellent quality. Also, the water quality of 34% and 3% of the samples fell in good and poor quality categories, respectively. None of the bottled water samples was of very poor quality.
Conclusion: The quality of bottled water investigated in this study was generally suitable, but due to the wide range of bottled water in Iran based on brand and seasons, continuous evaluation of water treatment methods in companies and careful monitoring of chemical and microbial quality of bottled water in all seasons is recommended.

Ehsan Manavipour, Akbar Eslami, Abbas Shahsavani, Ahmad Alahabadi, Reza Saeedi, Fatemeh Shokri Dariyan, Mehrnoosh Abtahi,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: In today's society, preparing healthy food has become challenging due to the variety of food production methods. Oil is produced in several ways in our country. In the cold pressing method, there is insufficient monitoring of the manufactured product. The aim of the present study is to investigate the physicochemical characteristics and the levels of heavy metals of industrial oil compared to cold-pressed oil.
Materials and Methods: In this research, 54 samples of sunflower, sesame, and canola oil produced by both cold pressing and industrial refiningmethods were prepared. Their physicochemical characteristics, including refractive index, acid value, iodine value, saponification value, peroxide value, anisidine value, as well as the concentrations of lead, iron, arsenic and copper were determined. Additionally, the effect of storage time on these characteristics was investigated.
Results: The Iodine number showed the highest deviation from the standard (61%), with an average of 136.70 gI/100g for the cold-pressed oil and 134.48 gI/100g for industrially refined oiland. The average value of the physicochemical characteristics, except for the saponification value, were higher in the cold-pressed oil samples  compared to the industrially refined oil samples, but the observed difference was not statistically significant. An investigation into the effect of storage time on physicochemical properties revealed a significant increase in peroxide value (p<0.01) and anisidine (p <0.05) in both oil groups over a two-month period. The average concentration of arsenic, lead, iron and copper in the studied oils was 0.03, 0.78, 0.05 and 0.05 mg/kgoil, respectively. A deviation from the standard was observed only in one sample of cold-pressed sunflower oil, with an arsenic concentration of 0.11 mg/kgoil).
Conclusion: Based on the obtained results, the refined industrial oils exhibited more favorable chemical characteristics and stability.  It is suggested that cold-pressed oils should be consumed within a short period of time. For frying purposes, refined industrial oils are preferable.
 

Hadi Niknejad, Nima Kalvani, Mehdi Seyedirad, Alireza Ala, Reza Saeedi, Mehrnoosh Abtahi, Fathollah Gholami-Borujeni,
Volume 17, Issue 2 (9-2024)
Abstract

Background and Objective: There have been concerns about microbial contamination along the coastal cities in the north of the country, particularly in cities of Mazandaran province, which could pose health risks for swimmers and tourists. The present study aimed to quantitatively assess the risk of gastrointestinal diseases resulting from exposure to E. coli and enterococci bacteria during recreational activities on the beaches of Fereydunkanar.
Materials and Methods: In this cross-sectional descriptive study, 66 grab samples collected during the summer were analyzed to investigate microbial contamination in the recreational beach waters of Fereydunkanar.The Monte Carlo simulation method was used to calculate both daily and annual infection risks.
Results: The findings demonstrated that transmission of enterococci was more likely than that of E. coli in the swimming areas of these beaches. The average annual infection risk for E. coli was 0.41 for adults and 0.69 for children . Additionally, the annual risk of enterococci infection was 1 for adults and 0.99 children and, which exceeds the range advised by the WHO and EPA. These findings indicate that children have a higher infection risk compared to adults.
Conclusion: Unrestricted discharge of municipal and industrial wastewater effluents into sea and rivers can contribute to the presence of harmful microbes in beaches. By implementing effective environmental and recreational management strategies, it is possible to minimize the risk of public health hazards at recreational beaches while also preserving the natural beauty of these important public spaces.
 

Alireza Mesdaghinia, Kamran Bagheri Lankarani, Kazem Naddafi, Mohammad Sadegh Hassanvand, Mohammad Paeezi, Reza Saeedi,
Volume 17, Issue 4 (3-2025)
Abstract

Background and Objective: The use of chemical pesticides is essential for integrated pest management; however, their improper application can lead to significant health and environmental consequences. This study aimed to develop an advocacy document for managing pesticide residues in agricultural products in the country, supported by the Academy of Medical Sciences of the Islamic Republic of Iran.
Materials and Methods: The study comprised the following steps: (1) formation of a committee to develop the advocacy document, (2) assessment of pesticide residue levels in agricultural products, (3) evaluation of the management of pesticide residues in the country, (4) drafting the advocacy document, and (5) proposing executive recommendations to improve the current situation.
Results: The systematic review and meta-analysis revealed that approximately 19% of agricultural products in the country exceeded the maximum residue level (MRL) set by the Codex Alimentarius Commission, a relatively high rate compared to other countries. While existing laws and regulations provided a clear framework for pesticide residue management and outlined stakeholder responsibilities, there was insufficient allocation of resources and support for policymakers, executives, beneficiaries, and the general public. The advocacy document identified stakeholder roles and defined five goals to enhance stakeholder engagement and foster intersectoral collaboration. The five key recommendations to improve the current situation were: (1) clarifying the current status of pesticide residue management, (2) setting quantitative goals for programs, (3) ensuring adequate budget and resource allocation, (4) leveraging expert opinions effectively, and (5) improving the performance of beneficiaries.
Conclusion: To ensure the implementation of these recommendations and achieve the goals outlined in this document, it is recommended to establish an advocacy committee on pesticide residue management in agricultural products. This committee should include representatives from all responsible organizations within the Ministry of Health, Treatment, and Medical Education.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb