Search published articles


Showing 2 results for Shahmoradi

S Dehestaniathar, Sh Amini, A Maleki, B Shahmoradi, N Reshadmanesh, P Teymouri,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Fluoride has both beneficial and detrimental effects on health. Therefore, it is important to determine its concentration in drinking water. Dental fluorosis and skeletal fluorosis are health effects caused by long term exposure to high levels of fluoride in drinking water. The aim of this research was to investigate fluoride removal using modified diatomite-supported ferric oxide nanoparticles and to determine the adsorption kinetics and isotherm.

Materials and Methods: This fundamental and practical study was performed at laboratory scale. The effects of pH (3.5-9.5), contact time (20-100 min), adsorbent dosage (1-5 g/L), and initial concentrations of fluoride (5-25 mg/L) on the adsorption efficiency were evaluated. The properties of adsorbent were investigated using XRD, XRF, FTIR and FESEM. Finally, the suitability of pseudo first and second order kinetics, and Langmuir and Freundlich isotherms for the data were investigated.

Results: This study showed that the removal efficiency of F- increased with increase in contact time, decrease in pH, increase in adsorbent dose, and increase in initial fluoride concentration. The highest removal efficiency was observed at pH=3.5, 60 minutes contact time, and 3 g/L of adsorbent dose in the initial concentration of 5 mg/L F-. Pseudo first order and Freundlich were the best fitted kinetic and isotherm models, respectively, for describing F- adsorption process.

Conclusion: The present study indicates that the modified diatomite-supported ferric oxide nanoparticles can be used as an effective and environmentally friendly biosorbent for the removal of fluoride ions from aqueous solutions.


Seyed Khabat Naynava, Bahareh Lorestani, Mehrdad Cheraghi, Soheil Sobhanardakani, Behzad Shahmoradi,
Volume 17, Issue 3 (12-2024)
Abstract

Background and Objective: Fenitrothion is a phosphorus-based pesticide that enters water resources through various sources,including industrial wastewater and agricultural effluent. its non-biodegradability, which results from the formation of strong chemical complexes, advanced oxidation methods are required to remove it from environmental matrices.  This study aimed to evaluate the performance of a magnetic graphene oxide nanocomposite functionalized with cerium dioxide in the removal fenitrothion from aqueous solution.
Materials and Methods: In this applied research, GO@Fe3O4@CeO2 was synthesized and subsequently used as a photocatalyst for the removal of Fenitrothion from aqueous solutions. Characterization of GO@Fe3O4@CeO2 was conducted using X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), SEM-EDX elemental analysis, Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM) methods. The effects of various parameters, including pH (2-9), photocatalyst dosage (10-40 mg), and contact time (0-90 min), were assessed to determine their influence on fenitrothion removal efficiency. 
Results: The results demonstrated that the removal efficiency increased up to 60 min contact time, 20 mg of photocatalyst. The optimal pH for fenitrothion removal was found to be 4. Additionally, kinetic analysis of the photocatalytic removal process indicated that it followed a pseudo first-order (PFO) model.
Conclusion: The GO@Fe3O4@CeO2 nanocomposite proved to be an effective and accessible photocatalyst for the removal of fenitrothion from industrial wastewater under UV light.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb