Search published articles


Showing 3 results for Solaimany Aminabad

A.r Rahmani, M Solaimany Aminabad, Gh Asgari, F Barjasteh Askari,
Volume 3, Issue 4 (8 2011)
Abstract

Backgrounds and Objectives: High level of nitrate ion in the water resources cause some health and environmental problems. The aim of this research is to study nitrate removal by Zero-Valent Magnesium (ZVM) and MgCl2-modified pumice from aqueous solutions.
Materials and Methods: The pumice granules were modified by MgCl2 . The removal of nitrate was studied in a batch system. The pH, initial nitrate concentration and sorbent mass parameters and the Langmuir and Freundlich models were studied in the sorption of nitrate onto the pumice. The ZVM was also used in a bach system and the previous parameters were studied.
Results: The removal efficiencies of nitrate by ZVM at the the initial pH of 3, 5 and 7 with controlling the pH were 70%, 40% and 30% ,respectively. These values are much higher than the values of the condition during which the pH was not controled. The nitrate removal efficiency increased by increasing of initial nitrate concentration in a constant molar ratio of Mgo/NO3. The removal efficiencies of nitrate by the modified pumice at the the initial pH of 3, 6.5 and 10 (when pH kept under control) were 49%, 29% and 16%, respectively. By increasing of the initial nitrate concentration the removal efficiency increased. The values of R2 for the Langmuir and Freundlich models were 0.944 and 0.810, respectively. The sorption process Fitted well the Langmuir model with a monolayer sorption capacity of 0.68 mg/g.
Conclusion: The modified pumice had lower efficiency than ZVM in the removal of nitrate ion and its usage is not considerably affected bye the pH in comparison with ZVM. The pH of the solution should be cansiderd as a main controling parameter to get an optimum efficiency in the nitrate-ZVM process.


M Hadi, R Shokoohi, A.m Ebrahimzadeh Namvar, M Karimi, M Solaimany Aminabad,
Volume 4, Issue 1 (24 2011)
Abstract

Background and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gentamycin, Ceftizoxime, Nalidixic Acid, Ceftazidime, Ceftriaxon and Cefalexin were investigated in this study.
Materials and Methods: through a cross-sectional descriptive study the isolation of bacteria from hospital and urban wastewater samples was performed by microbiological identification techniques. The resistance to nine antibiotics was tested by application of the standard disc diffusion technique and zone-size interpretation chart of Kirby-Baeur. Non-parametric Mann-Whitney test was used to assessing two environments differences.
Results: The resistance percentage of E. coli to studied antibiotics was significantly less (ranged from 1.81 to 51.02%) than the resistance percentage of P. aeroginosa (ranged from 3.57 to 61.76) and K. pneumoniae (ranged from 6.45 to 91.83%). the highest resistance to antibiotics studied was for K. pneumonia in comparison with others. E. coli, K. pneumonia and P. aeroginosa bacteria showed the highest resistance to CAZ, SXT and CN, respectively. The study showed the resistance rate in hospital wastewater is more than urban wastewater.
Conclusion: Easy access and uncontrolled usage of antibiotics cause discharge of antibiotics to wastewaters and consequently diminish the drugs' effectiveness. High concentration of antibiotic and diversity in wastewater of hospital in comparison with urban wastewater causes to transfer resistant agents between bacteria and increased the multiple resistances.


M Hadi, M Solaimany Aminabad, M Amiri, M Arjipour,
Volume 11, Issue 3 (12-2018)
Abstract

Background and Objective: Treatment of hospital wastewaters has an important role in reducing the discharge of organics and pharmaceutical compounds into aquatic environments. Nowadays, advanced oxidation processes were extensively used for the removal of organic compounds from treated effluents. The study aimed to examine organic compounds removal from real treated effluent of a hospital treatment plant using a lab scale UV/H2O2/TiO2 process by optimizing the process.
Materials and Methods: The effluent characteristics including COD, TOC and DOC were measured and recorded. A hybrid advanced oxidation process (UV/H2O2/TiO2) was used for the removal of organic compounds. The experiments were designed using surface response methodology (RSM). The effects of the independent factors including pH, duration of UV irradiation, H2O2 and TiO2 concentrations on COD, TOC, DOC and the approximate cost of treatment were assessed by analysis of variance (ANOVA).
Results: The optimal condition was 7.2 for pH, 50 mg/L for H2O2, 100 mg/L for TiO2 and 19.65 min for irradiation time. This condition provided the maximum removal percentage for organic compounds with a minimum cost. The removal efficiency for TOC, DOC and COD were 63.9, 52.9, and 64.7%, respectively. The treatment cost was approximated to be $ 0.71 per one liter of the effluent.
Conclusion: Irradiation and H2O2 concentration had the greatest impact on the cost of the treatment. UV/H2O2/TiO2 process seems to be an expensive process for tertiary treatment of wastewater. However, further investigations are required to evaluate the cost effectiveness of the process for a full scale operation.
 
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb