Search published articles


Showing 3 results for Tahmasebpoor

Maryam Tahmasebpoor, Leila Sanaei, Masoomeh Chaharkam,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: Zeolites are among the widely used adsorbents for the removal of arsenic-toxic pollutants. The objective of this study is to prepare granulated zeolite adsorbents using chitosan (CS/Fe-Clin) and alginate (Alg/Fe-Clin) and compare them in terms of physical appearance and arsenic adsorption efficiency.
Materials and Methods: Granular adsorbents were prepared via the ionotropic gelation method. The effects of the type and concentration of the cross-linking solution and the initial ratio of materials in granules formation, as well as the effect of initial arsenic concentration, and the amount of adsorbent used on the adsorption efficiency, were investigated. SEM, XRD, FTIR, and AAS analyses were used to confirm the results. Equilibrium data were matched with Freundlich and Langmuir isotherms.
Results: A weight percentage of 2 % iron chloride (III) and an initial ratio of 1:4 of alginate: nanocomposite for Alg/Fe-Clin and a weight percentage of 2 % (1 % sodium hydroxide + 1 % sodium tripolyphosphate) and an initial ratio of 1:3 of chitosan: nanocomposite for CS/Fe-Clin were chosen as the optimal values. Maximum adsorption efficiency of Alg/Fe-Clin and CS/Fe-Clin adsorbents was determined 88.1 and 92.9 % at dosages of 0.6 and 1 g/L and at initial concentrations of 200 and 300 µg/L, respectively. The qmax values for Alg/Fe-Clin and CS/Fe-Clin adsorbents were 11.11 and 10 mg/g, respectively. Results better fitted with Freundlich isotherm.
Conclusion: Due to the proper adsorption capacity, both synthesized adsorbents showed the ability to effectively remove arsenic; whoever, alginate binder was more efficient.
 

Hamidreza Ramezan Behtash, Maryam Tahmasebpoor,
Volume 17, Issue 2 (9-2024)
Abstract

Background and Objective: One of the major challenges in the calcium looping process is the loss of CO2 capture capacity of calcium-based sorbents during consecutive cycles due to increased sintering mechanism. This article aims to improve the performance of carbonation conversion in different cycles by employing hydration and acidification methods.
Materials and Methods: Following the preparation of both  CaO-based and modified sorbents, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analyses were employed to verify the proper preparation of the sorbents and examine their structures. Subsequently, the adsorption performance of different samples was assessed using a thermogravimetric analyzer device .
Results: The results of the carbonation reaction showed that the effective conversion rates for the raw and modified sorbents, employing acidification and hydration methods, at the end of the first cycle were 75%, 86%, and 73%, respectively. By the twentieth cycle, these rates decreased to 24%, 38%, and 26%, respectively. This decline indicates an improvement in the sorbent's capture capacity, attributed to the formation of calcium acetate, resulting in a more stable and porous structure. The findings from utilizing raw limestone sorbents and their modified versions through acidification and hydration techniques demonstrated a decrease in sorbent capture capacity by 69, 58, and 67% across twenty cycles. This highlights the enhanced sorbent stability achieved with the acidification method.
Conclusion: Based on obtained results, acidification method can be considered as one of the most efficient approaches for improving the performance of calcium oxide sorbents.
 

Omid Mohammadi Moinalzoafa, Maryam Tahmasebpoor,
Volume 17, Issue 4 (3-2025)
Abstract

Background and Objective: The global increase in energy consumption has led to a rise in carbon dioxide emissions, causing significant and often irreparable damages such as global warming. This study investigates the adsorption capacity of hairy nanocrystalline cellulose as a novel adsorbent and seeks to enhance its performance in carbon dioxide capture by modifying it with two types of amines: monoethanolamine and diethanolamine.
Materials and Methods: Hairy nanocrystalline cellulose was synthesized through oxidation and amine modification. The formation of chemical groups and sample morphology was analyzed using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Additionally, thermogravimetric analysis was performed at two temperatures (25 and 50 °C) and two concentrations (10% and 90% carbon dioxide in nitrogen) to evaluate the adsorption capacity of the samples.
Results: The results showed that at 25 °C and a carbon dioxide concentration of 90%, the adsorption capacities of hairy nanocrystalline cellulose, cellulose modified with 20% by weight of monoethanolamine, and cellulose modified with 20% by weight of diethanolamine were 1.74, 2.5, and 1.96 mmol/g, respectively. These findings indicate that modifying the adsorbent with monoethanolamine increased its carbon dioxide adsorption capacity by approximately 44%, while modification with diethanolamine resulted in a 13% improvement.
Conclusion: The findings suggest that hairy nanocrystalline cellulose, particularly in its modified forms, holds significant promise as a novel and effective adsorbent for carbon dioxide capture.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb