Search published articles


Showing 2 results for Yavari

F Mohammadi, S Rahimi, Z Yavari,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated.

Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN). Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized.

Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI) are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984) with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results.

Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be achieved.


Asghar Yavari, Mehdi Moradi Nazar, Seyedeh Maryam Sharafi, Amir Hossein Nafez, Meghdad Pirsaheb,
Volume 15, Issue 1 (4-2022)
Abstract

Background and Objective: It is important to determine the quality of the compost to use compost properly. The aim of this study was to determine the effect of mixing ratio of bulking agent on stability and maturity indices in poultry waste compost.
Materials and Methods: Two piles of sawdust mixture with poultry wastes and volume ratios of 1:1 (W1) and 2:1 (W2) were prepared by Windrow method and a pile containing poultry manure was used as control (W0). In order to determine the stability and maturity indices in compost, the most important physicochemical and biological parameters were studied.
Results: The thermophilic phase lasted about 7 weeks for W1 and about 4 weeks for W2. The initial C/N ratios in the W0, W1 and W2 were 27.10, 31.40 and 56.24, respectively, which eventually reached less than 20. The reduction of organic matter in the three piles was 8.30%, 62.59% and 85.53%, respectively. The thermophilic phase caused a sharp decrease in the population of indicator and pathogenic microorganisms in all piles. The highest dehydrogenase activity in W1 pile was 2.95 mgTPF/gDW.h and by decreasing temperature until the last day, its value decreased to 0.29 mgTPF/gDW.h.
Conclusion: The best ratio for mixing sawdust with poultry manure was 1:1 (v:v). Microbial and enzymatic activities are useful parameters for monitoring poultry composting process and determining the rate of compost stability, and the use of this compost in agriculture will improve soil quality.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb