Search published articles


Showing 9 results for Zazouli

Ma Zazouli, S Nasseri, A Mesdaghinia,
Volume 1, Issue 1 (26 2008)
Abstract

Background and Objectives: Natural organic matters (NOMs) are abundant in natural water resources and in many ways may affect the unit processes in water treatment. Although NOMs are considered harmless but they have been recognized as disinfection by-products (DBPs) precursors during the chlorination process. Formation of DBPs highly depends on the composition and concentration of NOMs. The objective of this study was to determine natural organic matter and its fractions concentrations in the surface water sources of Tehran.Materials and Methods: Water sampling was conducted monthly between May to July in three rivers of Lar, Jajrood and Karaj, as the main drinking water supplying sources in Tehran. Quantitative parameters of pH, EC, UV254 and DOC were studied based on standard methods. The XAD-7 resin method was used for fractionation of NOMs.Results: Results showed that NOM concentrations in Lar, Jajrood and Karaj rivers were 8.53, 12.9 and 11.3 mg/L, respectively. The HPO (hydrophobic) fraction was predominant compared to the HPI (hydrophilic) fraction in water samples. The mean of total percent of HPO and HPI fractions were about 57% and 43%, respectively.Conclusion: Since the hydrophobic NOM fraction exhibits higher trihalomethane formation potential (THMFP) than hydrophilic part, Tehran water chlorination exhibits higher THMFP than haloacetic acid formation potential (HAAFP). The information obtained from this study may be further employed in the design of the control techniques and management strategies for the water treatment plant, especially for DBPs reduction.


M.a Zazouli, A Mohseni Bandpei, A Eslami, A Sadeghi,
Volume 1, Issue 2 (10 2009)
Abstract

Background and Objectives: Recycling is one of the best alternatives in solid wastes management.  Recycling has few benefits from the viewpoint of economics and environmental. Paper and cardboard are the valuable recyclable materials in solid wastes. The rate of paper recycling is 35% in world. The major production source of paper and cardboard wastes is private and governmental offices and organizations. To be informed about paper production is very important in the solid wastes recycling.Thus, the aim of this study was to determine production rate of paper and cardboard waste and also to determine paper recycling potential in the 20 head offices of Mazandaran province.
Materials and Methods: This study was conducted in the 20 head offices of at province center. The  offices were selected by chance. This study was conducted four months in 2006. paper waste was separated after suspension of work. Collected material weighed on the sensitive scales. Separation and measuring was done for a week per month.
Results: The results showed that more than 2 tons of paper waste was produced in the twenty offices.  The maximum and minimum of paper production was in education and recycling organization, respectively. The maximum and minimum of production rate was 2.08 and 0.192 kg per capita in month that was in the education and Jihad-e-Agriculture organization, respectively. Also the maximum and minimum of paper waste was produced at first work day of week (Saturday) and last work day of week (Thursday), respectively. However, it was not significantly (P >0.05). Paperrecycling operation and marketing was done in an office.
Conclusion: Findings of this study indicated that office solid waste management needs more notice  in Iran. And also calculations showed that paper recycling is economical.


M.a Zazouli, E. Ghahramani, M. Ghorbanian Alahabad, A. Nikouie, M. Hashemi,
Volume 3, Issue 1 (3 2010)
Abstract

Backgrounds and Objectives: One of environmental outcomes in industrial towns is developing environmental pollution such as production of industrial wastewaters. These industrial wastewaters should be appropriately treated before entering to receiving waters. However we can't solve environmental anxieties by establishing of wastewater treatment plants alone but permanent and regular assessment of these treatment plants performance is necessary for achieving environmental standards. Thus, this research has been done in order to investigation of activated sludge performance in wastewater treatment of Agghala industrial town in Golestan province.
Materials and Methods: This cross-sectional study implemented in sewage treatment plant laboratory of Agghala industrial town in Golestan within 12 months at 2007. Chemical Oxygen Demand (COD) parameter determined twice in week, But Biochemical Oxygen Demand (BOD) test accomplished weekly. pH measured by pH meter daily. Experiment of total suspended solids (TSS) and total dissolved solids (TDS) carried out every 10 days. All tests accomplished according to standard method for water and wastewater examination (2005). Then data analyzed using excel 2007.
Results: The average of BOD, COD and TSS in influent was 11196.17, 1854.58, 1232.25 mg/L respectively.Maximum influent organic loading rate was related to Shahrivar andMehr months. The total average of removal efficiency for BOD, COD and TSS was calculated 99.66, 98.2, and 97.6% respectively.
Conclusion:Quality of this treatment plant effluent was according to effluent disposal standards all over year. In sum, efficiency of this treatment plant (activated sludge system) was very good ininfluent pollutant removing. However occasionally effluent was not adapted with environmental standards but these deficiencies is solvable by accurate management and supervision on flow rate and influent organic loading rate easily.


Mr Khani, Ah Mahvi, Ma Zazouli, Z Yousefi, Y Dadban Shahamat,
Volume 12, Issue 1 (5-2019)
Abstract

Background and Objective: Olive Mill Wastewater (OMWW) is one of the most polluted sanitary wastewaters that its ineffective treatment will cause severe pollution of the environment. In this study, OMWW treatment wasinvestigated using combined electrocoagulation and novel advanced oxidation process.
Materials and Methods: Biodegradability, efficiency and kinetics of removal of turbidity and organic matter from the OMWW by applying the operational parameters of electrocoagulation such as current density (0-0.77 A/dm2), type of anode electrode, reaction time (0-45 min) were investigated. Various types of advanced oxidation processes were performed to determine the the efficiency of removal of TOC and kinetics and biobegradability.
Results: The optimum condition for removing turbidity, BOD, TOC and consumed Iron anode electrod in electrocoagulation were 78%, 57%, 72% and 583 mg/ per liter of wastewater, respectively. Thus, the kinetic of TOC removal was first-order and was 0.027 min-1. The TOC removal efficiency of pretreated OMWW in oxidation processes of US, H2O2, SOP, O3 / H2O2, COP, COP/US and H2O2/COP/US were measured as 8%, 15%, 20%, 25%, 61%, 68% and 75%, respectively. The highest biodegradability index (BOD/TOC) in the COP/US/H2O2 process was increased 1.5 times.
Conclusion: The advenced oxidation process of COP/US/H2O2 follwed by electrocagulation demonstrated an effective treatment of OMWW and improved its biodegradability. Therefore, this process can be used for efficient treatment of OMWW in olive and similar industries.
 

J Gorgani, R Nabizadeh, M Gholami, H Pasalari, M Yegane Badi, M Farzadkia, Ha Asgharnia, Ma Zazouli,
Volume 12, Issue 3 (12-2019)
Abstract

Background and Objective: Hospital wastes with the content of infectious, pathologic, sharp, pharmaceupitical and genotoxic materials are classified as hazardous wastes. Of which, genotoxic residues wirh mutagenic and teratogenic effects are of most great concern on human health. Genetic wastes are referred to as cytotoxic, chemical, and radioactive drugs used to treat cancer or treat transplantation. The purpose of this study was to evaluate the management of hospital wastes in Mazandaran province with emphasis on genotoxic waste.
Materials and Methods: This descriptive cross-sectional study was carried out in 35 governmental and social hospitals in Mazandaran province to determine the satus of hospital waste with focus on geotoxic waste. The quanity, quality and management approaches of hospital and genotoxic wastes in the studied hospitals were surveyed with a validated questionnaire. Results obtained from the present study were analyzed with Excel software.
Results: The average waste per each hospital bed was estimated to be 3.51 kilograms. Of which, 2.2, 1.24, 1.9 kg were categorized as municipal, chemical, and genotoxic wastes, respectively. The average of the hospital waste management index in Mazandaran province was found to be about 84 out of 100, indicating good management of these wastes. The management of genotoxic waste in 7 specialized chemotherapy hospitals was estimated to be 64 out of 100, indicating the average state of genotoxic waste management for these hospitals. In 28 non-chemotherapy hospitals, the genotoxic waste management index was approximated 42 out of 100, indicating poor management of these wastes.
Conclusion: The main weaknesses in hospital waste management are associated with the management of chemical-pharmaceutical and genotoxic wastes. Accordingly, improvement the quality of genotoxic and chemical-pharmaceutical wastes should be concerned in the future planning.
 

Ma Zazouli, Z Karimi, R Rafiee,
Volume 12, Issue 4 (2-2020)
Abstract

Background and Objective:  one of the major challenges in urban management in human societies is related to the collection, recycling and disposal of solid waste and sewage. Poor waste management causes pollution of water, soil and air. It will have a major impact on public health. The aim of present study was to investigate the current status and select the best options of management of municipal solid waste in Noor city (Mazandaran, Iran) using life cycle assessment (LCA) methodology.
Materials and Methods: This research considered with five scenarios: 1) Recycling, composting and unsanitary landfilling; 2) Recycling, composting and sanitary landfilling; 3) Recycling, incineration and sanitary landfilling; 4) Recycling, composting and anaerobic digestion, incineration, sanitary landfilling; 5) Recycling and unsanitary landfilling. The required data for life cycle assessment inventory were collected through reviewing resources, preparing of questionnaires, completing the questionnaire by staff, and field inspections.The life cycle inventory was approved by the IWM model.
Results: The scenario 5, which is the current situation in the region, had the highest environmental impact in terms of toxic emissions and ecological indicators among all the scenarios. Energy consumption in the scenarios 1 and 5 was higher than the unsanitary landfilling in comparison to the other scenarios. Accordingly, the scenarios 5 and 4 had the most and the least impact on methane gas production.
Conclusion: According to the ecological index, the fourth scenario including recycling, composting and anaerobic digestion, and sanitary landfilling was the best scenario.  Fifth scenario with the highest pollution load was the worst scenario evaluated.

Mohammad Ali Zazouli, Fathollah Gholami Boroujeni, Ali Asghar Nadi, Azam Ebrahimi,
Volume 15, Issue 1 (4-2022)
Abstract

Background and Objective: With increasing population growth and water pollution, fresh water supply sources are declining and can not meet today's human needs. Thus, energy conversion systems with high efficiency and low pollution such as desalination microbial cell have been considered. Therefore the aim of this research was to investigation the efficiency of microbial desalination cell (MDC) for desalination and treatment of salt wastewater.
Materials and Methods: To address this issue, the decision was taken to use saline synthetic wastewater with different initial salt concentrations (2, 5, 7 and 10 g/L NaCl) and, different hydraulic retention times (1, 2, 3 and 72 h) in open circuit voltage (OCV) and closed circuit voltage (CCV) continuous mode.
Results: The results showed that highest EC removal was 11.2% and 14.3% with 10 g/L NaCl in open and closed circuit mode, respectively. Maximum COD removal of 68.7% was achieved in CCV mode that was obtained at 10 g/L NaCl. Additionally, Escherichia coli, Bacillus, Enterobacter, Staphylococcus aureus, Pseudomonas and Citrobacter were diagnose as effective bacteria in decomposing wastewater.
Conclusion: The obtained results proved that MDC desalination microbial cell technology is Emerging technology that has many unknown aspects; however, it is expected to be an appropriate technique for wastewater treatment and desalination.
 

Samaneh Dehghan, Mohammad Ali Zazouli, Abolfazl Hosseinnataj, Masoome Sheikhi, Ali Koohi,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Nowadays, recycling is one of the ways to save mankind from the mass of waste it produces, and waste separation from the source is the first and most important link in the field of urban waste recycling. Since the necessity and basis of recycling is people's participation in separation plans from the source, the present study was conducted to investigate the awareness, attitude, and performance of the people of Mazandaran province regarding the source separation of household waste in 2021.
Materials and Methods: The present study was a descriptive-analytical and cross-sectional study, and the tool used in it was a researcher-made questionnaire including three dimensions of knowledge, attitude, and performance, the link of which was provided online to qualified people. The qualitative content validity of this questionnaire was confirmed by 8 environmental health experts in the field of the research subject. The reliability of the tool was also estimated through the Retest Method. Furthermore, the values of Cronbach's alpha coefficient for the three dimensions of awareness, attitude, and performance were calculated. In the following, the samples were selected in virtual groups based on the available sampling method and through the distribution of the questionnaire link online. Analysis of variance was used to compare the mean scores in the levels of variables, Pearson's correlation test was used to examine the relationship between the scores of awareness, attitude, and performance dimensions, and linear regression was used to examine the effect of independent variables. Finally, the data was analyzed in SPSS software (version 22).
Results: For the entire study population (305 people), the range and mean score of awareness were 0-6, and 5.03±1.18 respectively, the range and mean score of attitude were 17-85 and 61.01± 9.45, and the range and mean score of performance were 6-30 and 11.43±5.19, respectively. Also, there was a significant correlation between the mean scores of the dimensions of awareness and attitude (correlation coefficient=0.70), awareness and performance (correlation coefficient=0.68), and attitude and performance (correlation coefficient=0.63).
Conclusion: The results of this study, which was conducted to measure the knowledge, attitude, and performance of the people of Mazandaran province regarding the separation of household waste from the source and waste recycling, and with a survey of 305 households in this province, showed that although the most of people have a piece of proper knowledge and attitude related to the importance of separation and recycling of solid waste, they have not participated much in the plans of waste separation from the source. Therefore, in order to increase the level of people's performance, it is recommended to develop incentive programs in the field of source separation, including awarding prizes or applying discounts on waste charges, as well as providing suitable containers for waste separation to households for free by the municipality to encourage waste separation.
 

Mohammadali Zazouli, Samaneh Dehghan, Mahdieh Mohammadi Alashti, Afsaneh Fendereski, Reza Dehbandi,
Volume 16, Issue 4 (3-2024)
Abstract

Background and Objective: One of the main limitations of using compost is the possibility of heavy metals with high concentrations. Unlike organic contaminants, these elements resist decomposition by microorganisms and, when present at elevated levels, pose a toxicity risk to soil, plants, aquatic ecosystems, and human health.
Materials and Methods: This study was a descriptive cross-sectional study conducted in 2021-2022w. Samples were collected from three compost factories in Mazandaran (Babol, Behshahr, and Tonekabon) using random sampling methods and prepared according to the acid digestion method (National Standard Institute 5615). The concentration of heavy metals in the samples was measured using an ICP-OES.
Results: The average concentration of arsenic, zinc, lead, cadmium, cobalt, chromium, copper, and nickel in the analyzed samples were 1.38±3.47, 490±151.5, 74±12, 2.56±0.65, 4.5±1.46, 31.72±16.47, 186.11±49.9, 22.72±4.2 mg/kg dry weight of compost, respectively. The average concentration of heavy metals in different cities was compared using the Kruskal-Wallis test, based on which the concentration of heavy metals in none of the cities was significantly different from each other (p>0.05).
Conclusion: The concentration of heavy metals in the investigated compost samples was lower than the limits specified in both domestic and international standards. Therefore, the final product of the examined compost factories meets the health standards for heavy metals and is safe for use in environmental applications.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb