Search published articles



Mehrab Aghazadeh, Amirhesam Hasani, Mehdi Borghei,
Volume 15, Issue 3 (12-2022)
Abstract

Background and Objective: Based on its unique characteristics, oil industry wastewater must be treated before discharging into the environment. The study aimed to optimize the catalytic sonopraxone process in the treatment of petroleum wastewater using a statistical method.
Materials and Methods: The synthesis of Iron Oxide-Zinc Oxide was carried out by air oxidation and layer-by-layer self-assembly method. XRD, SEM, EDAX, FT-IR, BET, DRS, VSM and TGA techniques were used to investigate the structure. In this study, applied CCD method optimization of pH parameters, reaction time, ozone gas concentration, hydrogen peroxide concentration and catalyst amount in the process. In optimal conditions, BOD5 and TPH removal values, reaction kinetics and synergistic effect of mechanisms were studied. COD, TPH and BOD5 were measured by spectrophotometer (DR6000), GC-FID and incubator, respectively.
Results: The results indicated that the Fe3O4@ZnO structure is well formed. A quadratic model was proposed to model the process based on the correlation coefficient. Based on ANOVA analysis and p and f indices, the proposed model was reported to be significant. Optimum conditions include pH 6.4, ozone concentration 1.3 mg/L.min, hydrogen peroxide concentration 2.5 mL/L, reaction time 51 min and catalyst amount equal to 0.64 g/L. In these conditions, the amount of COD reduction was 82.3 and 70% theoretically and experimentally, respectively. Also, in optimal conditions, BOD5 and TPH removal rates were 90.5% and 85.8%, respectively. The kinetics of the process follows the kinetics of the first order (R2=0.98) and the presence of different mechanisms together causes a synergistic effect and increases the efficiency of the process.
Conclusion: This process can improve the quality of oil effluent based on COD, BOD5, and TPH removal.
 

Arezoo Mahmoudi, Seyyed Alireza Mousavi, Danial Nayeri, Parastoo Darvishi,
Volume 15, Issue 3 (12-2022)
Abstract

Background and Objective: The consequence of using coagulant materials such as aluminum sulfate and ferric chloride in the coagulation unit of conventional water treatment plants can generate plenty of sludge that contains large amounts of coagulant, which in addition to environmental risks, will also possess disposal costs. Today, intending to preserve the environment and reduce treatment costs, researchers emphasize the recovery and reuse of coagulants from sludge. In this regard, the present study was proposed and implemented to recover and reuse water treatment plant sludge as a low-cost coagulant in wastewater treatment.
Materials and Methods: This research is an experimental-laboratory study. In order to recover the coagulant from the collected sludge, acid hydrolysis method was used. The physicochemical characteristics of the recovered sludge were also determined using FTIR, FE-SEM, and BET analysis. Moreover, the efficiency of recovered sludge in different doses (50 to 300 mg/L) on wastewater treatability in terms of COD, TSS, VSS, turbidity, phosphorus, and coliform indices was compared with aluminum sulfate, ferric chloride coagulants, also the results of the study were analyzed and presented using Excel software (version, 2016).
Results: According to the results, the prepared sludge had no crystalline structure with amorphous morphology. In addition, recovered coagulant from water treatment sludge has demonstrated high efficiency for wastewater treatment, so 66.6%, 82.49%, 79.66%, 80%, 65 %, 99.18% of COD, turbidity, TSS, VSS, phosphorus, total coliform were removed at the highest dosage of recovered coagulant (300 mg/L), respectively. Furthermore, the recovered coagulant dosage had a significant effect on the performance of the coagulation and flocculation process in wastewater treatment.
Conclusion: The results showed that recovered coagulant from the sludge of the water treatment plant can be considered an acceptable option with appropriate effectiveness in the wastewater treatment processes.
 

Anasheh Mardiroosi, Hanieh Fakhri, Ali Esrafili, Masoumeh Hasham Firooz, Mahdi Farzadkia,
Volume 15, Issue 4 (3-2023)
Abstract

Background and Objective: Pharmaceutical compounds can cause potential risks to aquatic and terrestrial organisms. So far, different methods have been used to eliminate these pollutants, photocatalytic processes are one of the most efficient processes to eliminate pharmaceutical compounds. In this study, the efficiency of a novel MOF-based nanocomposite, PMo/UiO-66 as a photocatalyst for amoxicillin degradation under visible light irradiation was evaluated.
Materials and Methods: The study of the chemical decomposition of amoxicillin using the PMo/UiO-66 system was conducted at different stages. First, the PMo/UiO-66 MOF nanocomposite was synthesized using the solvothermal method, then the properties of the synthesized nanocomposite were investigated using XRD, FTIR, and SEM techniques. The effect of different operational parameters such as pH (3, 6, and 9), catalyst concentration (15, 20, 25, and 30 %w/w), initial concentrations of amoxicillin (20, 30, 40, and 50 mg/L) at different times on the removal efficiency was investigated. The reusability of the catalyst for four cycles was assessed.
Results: The results showed that PMo/UiO-66 nanocomposite at pH 6, 25 %w/w nanocomposite concentration, and the amoxicillin concentration of 20 mg/L led to complete decomposition of amoxicillin after 120 min. The kinetic of amoxicillin removal followed the first-order model. Reusability tests showed that the photocatalytic efficiency of the synthesized catalyst was not substantially reduced after four cycles.
Conclusion: The current study confirmed that the PMo/UiO-66 system has an appropriate efficiency for photocatalytic removal of amoxicillin under optimized test conditions.

Ehsan Rafeemanesh, Habibollah Esmaily, Farzaneh Rahimpour, Mohammad Javad Fahoul, Habib Herati, Hasan Jahed Taherani,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Employees of wastewater treatment plants are exposed to various harmful factors in the work environment that can threaten their health. In this research, the health status of the employees of Mashhad sewage treatment plants has been evaluated to help by implementing intervention programs to improve the health of employees.
Materials and Methods: In this descriptive-analytical study, (bioaerosols, UV rays, heat stress, and hydrogen disulfide gas) were measured in 5 treatment plants in Mashhad. All study variables, including health status, clinical tests, and job stress, were analyzed analytically in two operational and administrative employee groups. The standard HSE occupational stress questionnaire was used to investigate the state of occupational stress. All data were transferred to the computer and data analysis was done with the help of software SPSS20.
Results: The amount of pollutants except H2S gas was lower than the national occupational exposure limit. The number of smokers, diabetics, knee pain, and hearing loss was higher among operational than administrative employees, and hypertension, increased cholesterol, back pain, and skin disease were also more common in office workers than operational workers, but there were no statistically significant differences. Obesity and overweight (p<0.009) and increased triglycerides (p<0.05) were more common in administrative than operational workers, which had statistically significant differences. The state of job stress in operational employees was statistically significant compared to administrative employees regarding role (p<0.018) and communication (p<0.002).
Conclusion: Appropriate occupational health interventions to reduce pollutants, implement ergonomic programs and improve nutrition and increase physical activity and stress management can play an effective role in improving the health of employees of these units.
 

Razieh Rahimi, Gholamhossein Abdollahzadeh, Mohammad Sharif Sharifzadeh,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: many countries have currently put waste management as a priority on the agenda and are seeking to enhance its effectiveness by encouraging public participation. Therefore, this study aimed to evaluate the willingness of rural residents to participate in waste management processes in Jajarm County, North Khorasan Province.
Materials and Methods: The survey research method was used. The target population consisted of 4031 households from 37 villages in Jajarm County. The dependent variable of willingness to participate in waste management was measured with 5 variables, including willingness to pay for waste disposal, willingness to use special containers, eagerness to separate waste at source, eagerness to deliver separated waste, and tendency to cooperate with rural development. The impact of independent variables on the five dependent variables was evaluated by running five logit functions.
Results: The results of the models showed that age, education, regular waste collection by village councils, cooperation with rural cooperatives and organizations, payment for waste collection, familiarity with waste management methods, health effects of waste, familiarity with the harmful effects of waste, communication with extension agents and rural health liaisons, participation in waste management training classes, and satisfaction with the village council have a positive and significant (p0.05) impact on the willingness to participate in waste management.
Conclusion: Providing educational programs and introducing the consequences of non-separation of waste on human health and the environment is effective in attracting the participation of people in waste management plans and should be prioritized in waste management programs.
 

Sakine Shekoohiyan, Mojtaba Pourakbar, Asghar Zohdi Shiran, Farshid Ghanbari, Mostafa Mahdavianpour, Ehsan Aghayani,
Volume 16, Issue 4 (3-2024)
Abstract

Background and Objective: The development of the automobile industry has caused various pollutants to enter the environment, one of which is fluoride. Therefore, this study aims to improve the fluoride removal from wastewater pre-paint units of the automotive industry to achieve discharge standards to surface waters.
Materials and Methods: The study is descriptive and on an applied scale, which has been carried out to compare the efficiency of the chemical coagulation process using lime and alum, as well as the electrocoagulation process using aluminum anodes in the presence of lime to remove fluoride.
Results: The results of real wastewater characteristics showed that the pH of wastewater is in the range of 6.1 to 6.3, and its fluoride concentration is in the range of 45 to 55 mg/L. The results of the experiments show that in the most optimal possible state in the chemical coagulation process, it is possible to achieve fluoride removal efficiency in the range of 76 to 81 percent. However, the removal efficiency in the electrocoagulation process using an aluminum anode at a concentration of 5 mol/L of calcium ions, and current density of 20 A/m2 after reaction time of min 20 to 99% can also be achieved.
Conclusion: Considering the high fluoride removal rate (more than 99%) in the electrocoagulation process in the presence of calcium ions, this process can be introduced as an efficient technology for fluoride removal.
 

Mojtaba Yeganeh, Sevda Fallah, Hanieh Fakhri, Mahdi Farzadkia,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: Phenol compounds are commonly applied as raw materials in the production of pesticides, herbicides, and dyes. These compounds are toxic to animals, plants, and microorganisms. In this study, the sonophotocatalytic degradation of 2,4-dinitrophenol in aqueous solutions was investigated using organic-mineral polymer catalysts containing Zink and Cobalt oxides under visible light and ultrasonic (US) irradiation.
Materials and Methods: The characteristics of the synthesized catalyst were determined using XRD, FTIR, and SEM techniques. The effect of several key parameters, including pH (3-9), catalyst dosage (0.3-1 g/L), time (0-90 min), US power (100-200 W/m2), and initial concentration of 2,4-dinitrophenol (20-100 mg/L), on the degradation efficiency was also investigated.
Results: After 75 minutes of sonophotocatalytic processing, complete degradation of 2,4-dinitrophenol (20mg/L) was achieved with catalyst dosage of 0.5 g/L, pH of 9.0, and US intensity of 200 W/m2. Kinetic studies indicated that the sonophotocatalytic degradation process followed a first-order kinetic model. The results of radical scavenging experiments confirmed that HO° and O2˚- radicals are the main oxidative species involved in the degradation of 2,4-dinitrophenol. Furthermore, the reuse of the catalyst for five consecutive tests showed a slight decrease in removal efficiency.
Conclusion: The results demonstrate that the sonophotocatalytic process, using the modified organic-mineral polymers with mixed Zink and Cobalt oxides catalyst, can be an effective method for removing 2,4-dinitrophenol from aqueous media.
 

Abbas Ali Moserzadeh, Gholamreza Nabi Bidhendi, Nasser Mehrdadi, Mohammad Javad Amiri,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: A high concentration of Hydrogen Sulfide in biogas is a major problem associated with anaerobic digestion of waste rich in sulfate. It disrupts the functional process and reduces the lifespan of biogas facilities. The micro-aerobic (MA) process is an alternative method for direct sulfurization.
Materials and Methods: The effect of sulfate loading (200, 500 and 700 mg/L) on H2S in biogas were investigated. Subsequently, the effect of MA process (0.88, 1.04, 1.34 NL/day) on H2S reduction in biogas production was evaluated. Additionally, oxidation-reduction potential (ORP) and pH were measured. Finally, under optimal conditions, the biogas volume and the content of CH4 and CO2 in biogas were determined.
Results: The results indicated that there were no significant differences in biogas volume production between the reactor fed with 200 mg/L sulfate and the control. However, the biogas production in reactors with 500 and 700 mg/L sulfate decreased to 4103 and 3929 mL, respectively. The H2S levels in control and reactors with 200, 500, 700 mg/L sulfate were 0.35, 0.46, 2.4, and 1.8%, respectively. In reactors with MA at rates of 0, 0.88, 1.04, 1.34 NL/day, the H2S levels were 1.95%, 0.9%, 0.4% and 0.1% (V/V) in biogas, respectively. The pH in reactor varied between 2.7 and 4.7, and the ORP was measured between -281 and -291 mV. Statistical analysis shows that no significant difference was observed between the average daily production of biogas with MA process of 0.88 and 1.04 NL/day. However, MA with 1.34 NL/day resulted in a decrease in biogas production.
Conclusion: The results indicated MA at a rate of 1.04 NL/day is a favorable option for the treatment of sulfate-rich urban wastewater sludge due to its efficiency in H2S removal.
 

Gholamreza Shaghaghi, Amir Hossein Javid, Sara Allahyaribeik, Ali Mashinchian Moradi,
Volume 17, Issue 3 (12-2024)
Abstract

Background and Objective: The discharge of seawater concentrate from desalination plants into the sea causes irreparable effects on the environment. The purpose of this study is to identify the effects of this discharge, model methods for optimizing it, and design an effective outlet that minimizes environmental impacts and costs. 
Materials and Methods: This study discusses impacts of seawater concentrate discharged into the sea, numerical modeling of diffusion, and outlet design based on discharge standards.A review of articles and sources from databases such as Google Scholar, Academia, Scopus, Civilica and Irandak was conducted using keywords such as “brine discharge”, “numerical modeling”, and “outlet design.” Out of 132 reviewed articles, 45 articles were consistent with the objectives of the study.
Results: The effects of seawater discharge can be observed in the discharge area and at greater distances. Numerical modeling is employed to predict pollutant concentrations at various distances and to determine the optimal discharge point while considering established standards. The design of the diffuser and the use of multiple nozzles at an angle of 60 degrees result in the greatest dilution at the discharge point.
Conclusion: The use of desalination systems necessitates addressing the effects of climate change. Appropriate modeling and design of the outlet are essential for complying with environmental standards and optimizing costs. Further research in this field is needed.


Page 4 from 4     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb