Showing 29 results for Wastewater Treatment
Azadeh Modiri, Shadab Shahsavari, Ali Vaziri Yazdi, Ali Akbar Seifkordi,
Volume 13, Issue 1 (4-2020)
Abstract
Background and Objective: Arsenic has long been considered as a heavy metal and toxic pollutant due to its potential to harm the human health and the environment. Adsorption is one of the mechanisms for arsenic removal from wastewater. Therefore, the purpose of this research was to investigate the feasibility of synthesized chitosan-zirconium magnetic nano fiber on arsenic adsorption from wastewater and to evaluate its kinetic and isotherm models.
Materials and Methods: Synthesis of nanofibers was performed by electrospinning method and the optimal formulation was determined following the experimental design. Then, kinetics and isotherms of arsenic adsorption on the as synthesized nanofibers were investigated. The prepared nanofiber was characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopes (FESEM), Infrared Fourier Transform (FT-IR) and Vibrational Sampler Magnetic Meter (VSM).
Results: The optimal formulation was obtained: 2.84% chitosan, 0.97% nano-zirconium and 0.94% nano-iron. The adsorption of arsenic on synthetic fibers was found to follow quasi-first-order kinetics and the Freundlich isotherm. Furthermore, the effect of initial concentrations of arsenic, contact time, temperature and pH on arsenic adsorption were surveyed. The optimal condition for nitrate arsenic adsorption was obtained at initial concentration of 70 mg/L, 45 min contact time and at pH 3.
Conclusion: According to the results, the synthesized nanofiber displayed a regular network structure with the distribution of the Zr-nanoparticles in its shape. Also, according to the form of magnetometric analysis, it was found that chitosan-nanosirconium magnetic nanofibers are well magnetized and are free magnetic. Finally, it can be concluded that the synthesized nanosorbent has a high potential for arsenic removal from industrial effluents.
Mohsen Ansari, Mahdi Farzadkia,
Volume 13, Issue 1 (4-2020)
Abstract
Background and Objective: Considering 829000 annual diarrhoeal deaths due to water pollution worldwide, the World Health Organization has emphasized that countries should reduce this rate by upgrading their wastewater treatment systems. The purpose of this study was to evaluate the performance of a modified up flow septic tanks reactor for treatment of synthetic wastewater.
Materials and Methods: In this experimental study, a modified septic tank system based on the upstream hydraulic regime, and also a conventional septic tank system was designed, manufactured, and operated. The municipal wastewater was used to operate, and synthetic wastewater was used to maintain. The major performance indicators of septic tanks include: volatile solids (VS), volatile suspended solids (VSS), total suspended solids (TSS) and chemical oxygen demand (COD) were sampled and measured in triplicates. The experiments were done in three hydraulic retention times of 24, 48, and 72 hr. Finally, the results of the study were analyzed by statistical tests in the SPSS software.
Results: The average removal of TSS, VS, VSS, and COD in HRT 24 h for the conventional reactor were 55.07, 27.36, 30.82, and 55.52%, respectively, and for the upstream-modified reactor at HRT 24 h were 66.57%, 34.05%, 38.47%, and 65.57%, respectively.
Conclusion: Changing septic tanks to up flow regimes and creating a cylindrical shape in conventional septic tanks, the removal efficiency of conventional septic tanks was improved, and the effluent contamination load was reduced.
Abdolmotaleb Seid Mohammadi, Ghorban Asgari, Reza Shokoohi, Parastoo Shahbazi,
Volume 13, Issue 3 (11-2020)
Abstract
Background and Objective: Considering the importance of alkalinity in pH regulation and its buffering role, in this study, the effect of inlet wastewater alkalinity on the efficiency of the anaerobic unit of the wastewater treatment plant. Moreover, a superior chemical compound in providing alkalinity to wastewater was investigated.
Materials and Methods: This study was performed in the treatment plant to determine the relationship between input alkalinity and removal efficiencies of COD, BOD5 and TSS. In order to determine the optimal alkali material for superb anaerobic wastewater performance, four common chemical substances including, NaOH, Na2CO3, Ca(OH)2 and MgO were selected and examined using One Factor At Time (OFAT) test method.
Results: According to the results maximum removal efficiencies were obtained 62, 66.6 and 71.2% for COD, BOD5 and TSS, respectively under alkaline condition of 1260 mg/L CaCO3. Furthemore, the optimal dose to supply one unit of alkalinity by Na2CO3, Ca(OH)2 and MgO were 0.53, 0.54 and 0.3 mg/L, respectively. These values were obtained 5 min contact time and mixing rate of 150 rpm. However, for NaOH the optimal dose supply was obtained 0.35 mg/L for 3 min contact time and mixing rate of 100 rpm.
Conclusion: In conclusion, the performance of anaerobic baffled reactor is highly related to the supply of influent alkalinity to the reactor. In addition, the use of MgO can be considered as a suitable alkaline substance to neutralize acidic wastewater and provide alkalinity for ABR system.
Mohsen Ansari, Mahdi Farzadkia,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: Wastewater treatment and stabilization always imposes costs and consequently a lot of energy on wastewater treatment plants. To achieve the purification and stabilization of as much sludge as possible, breaking complex components into simpler components is considered a critical step. Therefore, this study aimed to evaluate the feasibility of treating the produced sludge in the municipal wastewater treatment plant using ozonation method.
Materials and Methods: In this study, sludge was obtained from the return line of activated sludge from the wastewater treatment plant in the south of Tehran. An ozonation generator with a discharge rate of 3 L/min and an ozone concentration of 40-35 mg/L was discharged to the reactor and the residual ozone concentration was measured by iodometric method. Finally, the total suspended solids and volatile, soluble chemical oxygen demand, total organic carbon, and biochemical oxygen demand during ozonation processes were measured using the Standard Method.
Results: The results of this study showed that the amount of TSS and VSS in the activated return sludge decreased from 4060 to 2100 mg/L and from 3300 to 1850 mg/L during the ozonation process, respectively. However, SCOD, TOC, and SBOD had an upward trend of about 18, 11.7, and 14 times in the same reaction time, respectively.
Conclusion: According to the results of this study, it can be concluded that the ozonation system can be proposed as a suitable process for the decomposition of sludge produced in wastewater treatment plants and increasing the biodegradability of these sludges.
Farah Rashadi, Nahid Navidjouy, Ali Ahmad Aghapour, Mostafa Rahimnejad,
Volume 14, Issue 3 (12-2021)
Abstract
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel cells in COD removal and bioenergy production from synthetic and real beverage wastewater.
Materials and Methods: In this research, a two-chamber microbial fuel cell with Nafion membrane and aerated cathode was set up using two electrodes made of carbon felt and flat graphite after being contacted by synthetic wastewater with a concentration of COD 5000 mg/L and real beverage wastewater. Organic matter removal efficiency and voltage, power density and maximum current were determine.
Results: Experimental results showed that maximum COD removal efficiency of 92 % was achieved in synthetic wastewater and with a carbon felts electrode. In this condition, maximum voltage, power density and output current density of 469 mV, 175.28 mW/m2, and 855 mA/m2, were obtained, respectively. However, by using real industrial wastewater (beverage), maximum removal efficiency of COD, voltage, power density and output current density, related to carbon felt electrodes were obtaines as 84 %, 460 mV, 91/65 mW/m2, and 635 mA/m2, respectively.
Conclusion: The findings showed that synthetic wastewater outperforms microbial fuel cells in terms of bioelectric production and organic matter removal as compared to real wastewater (beverage). The reason for the decrease in the cell performance might be the presence of solids and other confounding pollutants in real wastewater.
Arezoo Mahmoudi, Seyyed Alireza Mousavi, Danial Nayeri, Parastoo Darvishi,
Volume 15, Issue 3 (12-2022)
Abstract
Background and Objective: The consequence of using coagulant materials such as aluminum sulfate and ferric chloride in the coagulation unit of conventional water treatment plants can generate plenty of sludge that contains large amounts of coagulant, which in addition to environmental risks, will also possess disposal costs. Today, intending to preserve the environment and reduce treatment costs, researchers emphasize the recovery and reuse of coagulants from sludge. In this regard, the present study was proposed and implemented to recover and reuse water treatment plant sludge as a low-cost coagulant in wastewater treatment.
Materials and Methods: This research is an experimental-laboratory study. In order to recover the coagulant from the collected sludge, acid hydrolysis method was used. The physicochemical characteristics of the recovered sludge were also determined using FTIR, FE-SEM, and BET analysis. Moreover, the efficiency of recovered sludge in different doses (50 to 300 mg/L) on wastewater treatability in terms of COD, TSS, VSS, turbidity, phosphorus, and coliform indices was compared with aluminum sulfate, ferric chloride coagulants, also the results of the study were analyzed and presented using Excel software (version, 2016).
Results: According to the results, the prepared sludge had no crystalline structure with amorphous morphology. In addition, recovered coagulant from water treatment sludge has demonstrated high efficiency for wastewater treatment, so 66.6%, 82.49%, 79.66%, 80%, 65 %, 99.18% of COD, turbidity, TSS, VSS, phosphorus, total coliform were removed at the highest dosage of recovered coagulant (300 mg/L), respectively. Furthermore, the recovered coagulant dosage had a significant effect on the performance of the coagulation and flocculation process in wastewater treatment.
Conclusion: The results showed that recovered coagulant from the sludge of the water treatment plant can be considered an acceptable option with appropriate effectiveness in the wastewater treatment processes.
Hamid Kariab, Mohammad Mehdi Emamjomeh, Sheida Zakariaie,
Volume 15, Issue 4 (3-2023)
Abstract
Background and Objective: Due to the presence of heavy metals (HMs), sludge produced in industrial wastewater treatment plants (WWPT) is classified as special waste and can cause adverse health effects. The present study aimed to identify special wastes and assess the risk associated with the presence of HMs in the sludge of WWTP from an Industrial City.
Materials and Methods: Identifying the special wastes was conducted using a checklist, and classification was performed in accordance with the Basel Convention. Ecological risk assessment was done by determining the geo-accumulation and ecological indexes. The estimation of health risk was done by determining HQ and ELCR indexes.
Results: The highest amount of special waste was allocated to sludge with a value of 3900.0 kg/month. Chromium was detected in the highest concentration (95.89 ± 52.15 mg/kg). The level of chromium and nickel pollution was evaluated in the low range, and cadmium was very severe. The ecological risk of lead was estimated in a significant range and was very high for cadmium. The HQ was less than 1, and the ELCR for inhalation and dermal exposure was estimated to be lower than the acceptable risk level of WHO.
Conclusion: The present study showed that the largest amount of special waste is dedicated to sludge. Although the concentration of HMs was lower than the acceptable limits, the sludge had a high ecological risk level. Therefore, the accumulation and transfer of sludge must be carried out under the provisions of the Basel Convention and environmental considerations.
Ehsan Rafeemanesh, Habibollah Esmaily, Farzaneh Rahimpour, Mohammad Javad Fahoul, Habib Herati, Hasan Jahed Taherani,
Volume 16, Issue 2 (9-2023)
Abstract
Background and Objective: Employees of wastewater treatment plants are exposed to various harmful factors in the work environment that can threaten their health. In this research, the health status of the employees of Mashhad sewage treatment plants has been evaluated to help by implementing intervention programs to improve the health of employees.
Materials and Methods: In this descriptive-analytical study, (bioaerosols, UV rays, heat stress, and hydrogen disulfide gas) were measured in 5 treatment plants in Mashhad. All study variables, including health status, clinical tests, and job stress, were analyzed analytically in two operational and administrative employee groups. The standard HSE occupational stress questionnaire was used to investigate the state of occupational stress. All data were transferred to the computer and data analysis was done with the help of software SPSS20.
Results: The amount of pollutants except H2S gas was lower than the national occupational exposure limit. The number of smokers, diabetics, knee pain, and hearing loss was higher among operational than administrative employees, and hypertension, increased cholesterol, back pain, and skin disease were also more common in office workers than operational workers, but there were no statistically significant differences. Obesity and overweight (p<0.009) and increased triglycerides (p<0.05) were more common in administrative than operational workers, which had statistically significant differences. The state of job stress in operational employees was statistically significant compared to administrative employees regarding role (p<0.018) and communication (p<0.002).
Conclusion: Appropriate occupational health interventions to reduce pollutants, implement ergonomic programs and improve nutrition and increase physical activity and stress management can play an effective role in improving the health of employees of these units.
Abbas Khazaee, Mehrnoosh Abtahi, Mahsa Jahangiri-Rad, Fatemeh Shokri-Daryan, Mohammad Rafiee,
Volume 17, Issue 1 (6-2024)
Abstract
Background and Objective: Identifying the quality of non-conventional waters and exploring their optimal utilization are fundamental measures for maintaining public health. This study aims to investigate the effluent quality of the irrigation canals in Pakdasht farms.
Materials and Methods: In this cross-sectional descriptive study, 120 samples were collected from 6 irrigation canals in Pakdasht fields over a period of 5 months. The physicochemical and microbial characteristics of the canal effluents were determined based on the standard methods of water and wastewater tests. The concentration of heavy metals was measured using an ICP device. To determine the possibility of using the effluent of Pakdasht canals for agricultural purposes, the Environmental Protection Organization of Iran and FAO standards were used.
Results: The average concentrations of COD, BOD5, TSS, TDS, NO3-, SO4-2, PO4-3 parameters were 259, 125, 105, 697, 4.5, 94.4, 13.5 mg/L. Additionally, the average number of total and fecal coliforms in the effluent of the canals exceeded the standard values set by IRNDOE and FAO. The mean pH was 6.97, the electrical conductivity (EC) was 1014 μm/cm, and the turbidity was 76.2 NTU. The detected concentrations of heavy metals were awithin the following ranges: Cr (0.025-0.045 mg/L), Cd (0.0006-0.001 mg/L), Pb (0.0006-0.001 mg/L), Co (0.038-0.059 mg/L), and Ni (0.05-0.06 mg/L), which were roughly lower than the suggested standards. However, both HEI and WWQI indices confirmed that the water was unsuitable for agricultural irrigation.
Conclusion: Based on the comparison of the results of the parameters measured in this study with the environmental and FAO standards, the effluent from the irrigation canals of Pakdasht city is deemed unsuitable for the irrigation of warm-season crops but suitable for fodder and industrial crops.