Showing 34 results for Amin
Mahran Mohammadian Fazli , Jalil Nassiri , Ramin Nabizadeh, Mohammad Reza Mehrasbi,
Volume 6, Issue 1 (5-2013)
Abstract
Backgrounds and Objectives: Medical waste management is one of the important issues in solid waste managment in each community. This research was carried out to study the quantity, quality and the management practices of solid wastes of hospitals in Zanjan City in 2011.
Materials and Methods: In the present study, the hospital wastes were categoried and weighted into four main categories. Waste management pattern was studied based on a checklist extracted from national guidelines. Then, hospitals were ranked from very poor to excellent classes. For data analysis, Excel soft ware was used.
Results: Waste generation rate was on average 2.402± 0.163 Kg/bed.day in the studied hospitals. The generation rate of domestic waste, infectious waste, sharp wastes, and chemical - pharmacological waste was 1.432±0.059, 0.926±0.096, 0.029±0.0055, and 0.015±0.002 kg/day.bed respectively. The status of the waste management practices was determined as average.
Conclusion: Waste generation rate in the hospitals of Zanjan was lower compared with the expected average value in other cities (e.g. 2.71 Kg/bed.day in Tehran). The percentage of medical waste in Zanjan hospitals was 34, which is higher than W.H.O. recommendations. Therefore, it is strongly recommended to reform and monitor certain solid waste management practices in order to reduce health and environmental issues.
Bijan Bina, Mohamadmahdi Amin, Mohamadreza Zare, Ali Fatehizadeh, Mohsen Mohseni, Mahdi Zare, Ali Toulabi,
Volume 6, Issue 2 (9-2013)
Abstract
Background and Objectives: Toxicity assessment of material related to nanotechnology is
necessary before excess development of this industry. On the other hand, specific
characteristic of nanomaterials can be used in disinfection of other material. In
this study toxicity and antibacterial properties of nano-TiO2 and nano-CuO
were investigated with four bacterial species in solid media.
Material and Methods: Stock
suspension of nanoparticles (10g-TSS/L) was diluted using Muller Hinton Agar to
achieve 5-6000mg-TSS/L concentration. We prepared three Petri dishes for each concentration
and refined bacteria were cultured on these Petri dishes. After culturing of these
bacteria on the media containing nanoparticles, growth inhibition was determined.
According to this data, 50% growth inhibition (EC50), no observed effect
concentration (NOEC) and 100% growth inhibition were determined.
Results: Our results showed
that toxicity of TiO2 is more than CuO in solid media. In this regard,
nano-TiO2 EC50 for Escherichia coli, Bacillus subtilis, Staphylococcus
aureus, and Pseudomonas aeruginosa was calculated 181, 571, 93 and 933mg-TSS/L respectively.
These figures for nano-TiO2 were 2550, 1609, 946, and 1231mg-TSS/L respectively.
Conclusion: This study
showed that compared with other bacteria studied, E. aureus due to high sensitivity
and E. coli due to high resistance to both TiO2 and CuO nanoparticles
are more proper as bioindicator in toxicity test and antibacterial test respectively.
Amir Hossein Mahvi, Noushin Rastkari, Ramin Nabizadeh Nodehi, Shahrokh Nazmara, Simin Nasseri, Mahboobeh Ghoochani,
Volume 6, Issue 3 (12-2013)
Abstract
Background and Objectives:Chlorination is the most common method of water disinfection. Chlorine reaction with natural organic compounds nor removed completely during treatment process would result in forming disinfection byproducts. Followed by trihalomethanes, Haloaceticacides are the second main byproducts of chlorination in water. The research works conducted in Iran have assessed trihalomethanes. Hence, this is the first time we are reporting haloacetic acids in Iran.
Materials and Methodology: We collected samples from surface water resources and treated water in Tehran for six consecutive months (first half, 2010). We measured temperature, pH, UV adsorption at 254 nm and TOC in each surface water sample and analyzed pH, residual chlorine, and haloacetic acids in the treated water samples.
Results: We found that TOC in surface water resources is 3.6-4.42 and 1.78-2.71 mg/l in spring and summer respectively. Moreover, haloacetic acids concentration was found to be 41.7-55.56 and 34.83-43.73 μg/l in spring and summer respectively.
Conclusion: Our results revealed that concentration of NOM, TOC, and HAAs was more in spring than summer. In addition, concentration of HAAs was depended up on NOM and TOC. Considering maximum permeable concentration of HAAs (60 μg/l) by EPA, it can be claimed that concentration of HAAs was less than the maximum permissible level in all of the samples. However, the immanency of the monitored values to the standard values can be a warning for concerned authorities in water industry.
Zhila Moradi-Khatoonabadi, Yahya Maghsoudlou, Hamid Ezzatpanah, Morteza Khomeiri, Mehdi Aminafshar,
Volume 6, Issue 4 (3-2014)
Abstract
Background and Objective: Milk and milk products are very suitable medium for growing microorganisms (e.g. Bacillus cereus). B. cereus is spore former bacilli, which easily survives during pasteurization and makes several problems in dairy industries. The aim of this study was to investigate aerobic spore and B. cereus of receiving raw milk from three UF plants. Materials and Methods: Samples were gathered from raw milk transport tankers arrived to plants during 30 days in winter. Also, the swab test was used for detection of B.cereus residual on milk contact surfaces. Results: High contamination level of aerobic spores (AeSC) and especially B.cereus were found in most samples compared with the criteria established by national and international standards. Although total viable count (TVC) in samples from industrial farms (IF) was lower than those from traditional farms (TFs) and milk collection centers (MCCs), considerable AeSC and B.cereus were transmitted to the UF plants from IFs. The highest and lowest TVC and B.cereus were found in samples from IFs and MCCs, respectively. In addition, our investigation in IFs revealed that teats contamination to soil and feces, as well as contaminated bedding might were the most important sources of B. cereus and AeSC of raw milk. Moreover, the results of swab tests confirmed that the “cleaning in place” system may not remove B.cereus effectively. Conclusion: It seems that for classifying raw milk quality, AeSC might be used as a more effective quality factor than TVC. Management commitment is effective to improve quality by balance between the amount and quality of receiving raw milk. This leads to the lower contamination in dairy plants and final products.
Mahdi Sadeghi, Kazem Naddafi, Ramin Nabizadeh,
Volume 7, Issue 2 (10-2014)
Abstract
Background and objective: Perchloroethylene is a chlorinated hydrocarbon used as a solvent in many industries and services activities such as dry cleaning and auto industry as degreasing. We carried out a bioassay using Daphnia Magna in order to determine the ecological effects of wastewater treatment through applying advanced oxidation processes (ultrasonic, ultraviolet irradiation and hydrogen peroxide processes) for removal of perchloroethylene. Materials and Methods: Due to the sensitivity of Daphnia and reports indicating this species is the most sensitive aquatic invertebrate to a variety of organic compounds, toxicity of perchloroethylene and its intermediate degradation products during applying different processes was tested using Daphnia. Lethal concentration (LC50) and toxic units (TU) were determined. In to determine toxicity of perchloroethylene, its stock solution was prepared at a concentration of 100 mg/L. Then, nine samples each containing 0 (control), 5, 10, 20, 30, 40, 50, 75, and 100% by volume of the primary stock solution were prepared. To determine the toxicity of the intermediate products of perchloroethylene by ultrasonic, photolysis, photolysis with hydrogen peroxide and photosonic processes, an initial concentration of perchloroethylene for each reactor (100 mg/L) was taken. All experiments were carried out at the Laboratory of Microbiology, Faculty of Health, Tehran University of Medical Sciences, Iran. Results: It was found that the 24 h LC50 for perchloroethylene on Daphnia Magna was 35.51 mg /L. The 48 h, 72 h and 96 h LC50 of perchloroethylene were 28.058, 21.033, and 19.27 mg/L respectively. Toxicity of perchloroethylene was decreased after oxidation processes. Conclusion: The toxicity after hybrid processes was lower than the single processes. The toxicity reduction was the same during all time period. Hence, the hypothesis of reducing toxicity of the intermediate products of perchloroethylene degradation after the abovementioned processes is acceptable. It is noteworthy that although there are different intermediate compounds in the effluent of various chemical oxidation processes, , but they are less toxic compared with the original perchloroethylene this may be due to the partially concentration of intermediate products that will decrease toxicity.
S. A. Mirzaee, M.m Amin, M Sarafraz, M Heidari, M.m Ahmad Moazzam,
Volume 7, Issue 4 (1-2015)
Abstract
Background & Objectives: Disposal of pharmaceutical compounds to environment as an emerging pollutants cause concerns significantly and it is necessary to use new methods of sewage treatment for removal of these compounds. The aim of this study was to investigate the inhibition effects of metronidazole before and after using UV254/H2O2 process on specific methanogenic activity of.anaerobic biomass. Materials & Methods: Fourteen anaerobic digestion tests were carried out at batch scale before and after using UV254/H2O2 process in 500 ml reactors with 30% anaerobic biomass and 70% substrate. The liquid displacement method was used. Duration of each test was in the range of 10-17 days. Results: Cumulative Biomethane production in concentrations of 1, 5, 10, 25, 50, and 100 mg/l metronidazole was 34.04, 95.12, 100.86, 3.28, 27.88, and 6.97 ml respectively. This production was 800.73, 243.54, and 10.66 ml in concentrations of 25, 50, and 80 mg/l respectively using UV254/H2O2 process as pretreatment at 60 min retention time. Biomethane production in concentrations of 80,120, and 150 mg/l was 377.2, 380.48, and 63.14 ml respectively at 90 min retention time. Conclusion: Different concentrations of metronidazole had an inhibition effect on anaerobic digestions and therefore the efficient pretreatment method is needed to reduce this inhibition effect. The UV254/H2O2 process is an effective method for degradation and conversion of metronidazole to more biodegradable compounds for anaerobic bacteria consumption and, in turn, to increase biogasproduction in anaerobic digestions.
M Amirpour, M Amini, D Khademi Shurmasti,
Volume 8, Issue 1 (8-2015)
Abstract
Background & objectives: Aflatoxin M1 and M2 (AFM1 and AFM2) are secondary toxic metabolite of molds excreted into livestock milk and dairy products when animal consume feedstuffs contaminated with AFB1 and AFB2. Considering the importance of taking dairy products in human diet, the present study was carried out to determine AFM1 of pasteurized Kashk (industrial liquid) in Tehran Metropolitan. Materials & Methods: Totally, 32 industrial liquid Kashk samples (eight brands with four different dates of production) were purchased from supermarkets of Tehran and were analyzed using High Performance Liquid chromatography (HPLC) and immunoaffinity columns. Results: In this study, 90.62% of samples (mean: 60.17 ± 75.48 ppt) were contaminated with AFM1. The concentration of AFM1 in 20.68% of samples were higher than Iranian national standard limits (100 ppt). Comparison of different brands showed that brand B with the mean 99.09 ± 158.47 ppt and brand G with the mean 21.27 ± 16.91 ppt had the highest and lowest level of contamination respectively, however, the difference was not statistically significant (P > 0.05). Conclusion: Considering contamination of more than half of the samples with AFM1 and the point that even low level of aflatoxin can be a serious problem for human health, therefore, continuous control of dairy products and preventive proceedings such as avoidance of using moldy feedstuffs for livestock is suggested
M.m Amin, M Giyahi, M Mansourian,
Volume 8, Issue 4 (3-2016)
Abstract
Background and Objectives: Perchlorate, as an emerging contaminant, has attracted notice of the most individuals and organizations. Presence of perchlorate in the human body can lead to inappropriate regulation of metabolism in adults. Moreover, due to inhibition of iodide uptake in the thyroid gland, it causes neurological and behavioral problems in infants and children. United States Environmental Protection Agency (EPA) has enacted 15 µg/L perchlorate in drinking water as a guideline value. Regarding the possible sources and potential presence of perchlorate in the environment of the study area, and the unique characteristics of this pollutant, such as extreme water solubility, high mobility in soils and stability in the environment, the status of its contamination was assessed in soil, surface water and drinking water in the study area (Khorramshahr County).
Materials and Methods: Soil and water samples were taken during February to April, 2013. Combined sampling was used for soil sample collection and the random sampling was used for water (surface and drinking water) samples. Each sample was analyzed using ion chromatography. In this study, 15 samples of surface soil and 22 samples of surface and drink water were tested for perchlorate analysis.
Results: It was found that all surface soil and water samples collected from the study area were contaminated with perchlorate and exceed the standard level. Concentration of perchlorate in surface water and drinking water was 1400-5800 and 700-5900 µg/L respectively and in surface soils was 3.3-107.9 mg/kg.
Conclusion: The assessment of perchlorate in soil, surface water, and drinking water in the study area is extremely higher than recommended standards and therefore is a threat to the health of consumers.
F Rezaei, G Moussavi, A.r Riyahi Bakhtiari, Y Yamini,
Volume 8, Issue 4 (3-2016)
Abstract
Background and Objectives: Adsorption is one of the most common methods for VOCs elimination from waste air stream. The study on the application of a selective and cheap adsorbent with high efficiency in VOCs removal is important from economic aspects. In this study, the potential of MnO/GAC and MgO/GAC composites was investigated for toluene adsorption from air stream at lab scale.
Material and methods: The MnO/GAC and MgO/GAC adsorbents were prepared through Sol-gel method and then were characterized using BET, XRF, and SEM analysis. The effect of operational parameters including; retention time (0.5, 1, 1.5, 2, and 4 S), inlet toluene concentration (100, 200, 300, and 400 ppmv) and the temperature of the air stream (25, 50, 75, and 100 ˚C) were examined on the efficiency of both adsorbents. The efficiency of MnO/GAC and MgO/GAC were determined from the breakthrough time and adsorption capacity and the results were compared statistically.
Results: The breakthrough time of MnO/GAC and MgO/GAC adsorbents increased 90% by increasing retention time from 0.5 to 4 S. Adsorption capacity of MgO/GAC and MnO/GAC was increased 39and 61.1% by increasing inlet toluene concentration from 100 to 400 ppmv, respectively. Breakthrough time of MgO/GAC and MnO/GAC decreased 65 and 59% by increasing inlet toluene concentration from 100 to 400 ppmv, respectively. The efficiency of MgO/GAC and MnO/GAC adsorbents had a direct relationship with the increase of air temperature from 25 to 100 ˚C. Accordingly, the efficiency of MgO/GAC and MnO/GAC was increased 78 and 32% by increasing air temperature, respectively.
Conclusion: The results of the study showed that MgO/GAC and MnO/GAC adsorbents had high efficiency in toluene removal from air stream. The difference between the efficiency of MgO/GAC and MnO/GAC adsorbents was significant and MgO/GAC adsorbent showed higher efficiency than MnO/GAC for toluene adsorption from waste air.
S Dehestaniathar, Sh Amini, A Maleki, B Shahmoradi, N Reshadmanesh, P Teymouri,
Volume 9, Issue 2 (9-2016)
Abstract
Background and Objectives: Fluoride has both beneficial and detrimental effects on health. Therefore, it is important to determine its concentration in drinking water. Dental fluorosis and skeletal fluorosis are health effects caused by long term exposure to high levels of fluoride in drinking water. The aim of this research was to investigate fluoride removal using modified diatomite-supported ferric oxide nanoparticles and to determine the adsorption kinetics and isotherm.
Materials and Methods: This fundamental and practical study was performed at laboratory scale. The effects of pH (3.5-9.5), contact time (20-100 min), adsorbent dosage (1-5 g/L), and initial concentrations of fluoride (5-25 mg/L) on the adsorption efficiency were evaluated. The properties of adsorbent were investigated using XRD, XRF, FTIR and FESEM. Finally, the suitability of pseudo first and second order kinetics, and Langmuir and Freundlich isotherms for the data were investigated.
Results: This study showed that the removal efficiency of F- increased with increase in contact time, decrease in pH, increase in adsorbent dose, and increase in initial fluoride concentration. The highest removal efficiency was observed at pH=3.5, 60 minutes contact time, and 3 g/L of adsorbent dose in the initial concentration of 5 mg/L F-. Pseudo first order and Freundlich were the best fitted kinetic and isotherm models, respectively, for describing F- adsorption process.
Conclusion: The present study indicates that the modified diatomite-supported ferric oxide nanoparticles can be used as an effective and environmentally friendly biosorbent for the removal of fluoride ions from aqueous solutions.
F Khodamoradi, A Fotouhi, M Yunesian, Mh Emamian, H Amini, M Shamsipour,
Volume 9, Issue 4 (3-2017)
Abstract
Background and Objective: The aim of present study was to assess environmental inequality in long-term exposure to outdoor air pollution in 22 districts of Tehran in 2012.
Materials and Methods: The present study is an ecological study and concentration index was used for assessment of inequality. In this study the amounts of pollutant concentrations (PM10, NO2, SO2) obtained were based on land use regression (LUR) for exposure assessment. Variables that their effects have been studied on the distribution of exposure to pollutants included: education level, employment status and car ownership, which were obtained from census demographic and Tehran Municipality's dataset.
Results: The concentration index for PM10 in the case of illiteracy, people with higher education and private car owners was 0.059 (0.004-0.113), -0.056 (-0.001- -0.110) and -0.079 (-0.031- -0.127), respectively. These relationships were statistically significant. Concentration index for PM10 was 0.016 for the workers population, which was not statistically significant. For NO2 and SO2, no inequality was found in illiterate people, people with higher education, employees and car owners.
Conclusion: This study showed that there was significant inequality in terms of exposure to PM10 between different regions of Tehran in the illiterate, people with higher education and car owners. Considering these subgroups of population can be helpful in policy-making process.
M Hadi, M Solaimany Aminabad, M Amiri, M Arjipour,
Volume 11, Issue 3 (12-2018)
Abstract
Background and Objective: Treatment of hospital wastewaters has an important role in reducing the discharge of organics and pharmaceutical compounds into aquatic environments. Nowadays, advanced oxidation processes were extensively used for the removal of organic compounds from treated effluents. The study aimed to examine organic compounds removal from real treated effluent of a hospital treatment plant using a lab scale UV/H2O2/TiO2 process by optimizing the process.
Materials and Methods: The effluent characteristics including COD, TOC and DOC were measured and recorded. A hybrid advanced oxidation process (UV/H2O2/TiO2) was used for the removal of organic compounds. The experiments were designed using surface response methodology (RSM). The effects of the independent factors including pH, duration of UV irradiation, H2O2 and TiO2 concentrations on COD, TOC, DOC and the approximate cost of treatment were assessed by analysis of variance (ANOVA).
Results: The optimal condition was 7.2 for pH, 50 mg/L for H2O2, 100 mg/L for TiO2 and 19.65 min for irradiation time. This condition provided the maximum removal percentage for organic compounds with a minimum cost. The removal efficiency for TOC, DOC and COD were 63.9, 52.9, and 64.7%, respectively. The treatment cost was approximated to be $ 0.71 per one liter of the effluent.
Conclusion: Irradiation and H2O2 concentration had the greatest impact on the cost of the treatment. UV/H2O2/TiO2 process seems to be an expensive process for tertiary treatment of wastewater. However, further investigations are required to evaluate the cost effectiveness of the process for a full scale operation.
R Dehghan, S Abdolahi, M Rahimi, F Nejad Koorki, M Amini,
Volume 12, Issue 3 (12-2019)
Abstract
Background and Objective: Due to the increasing growth of urbanization, vehicles are one of the most important environmental causes of air pollution in today's world.. With the increasing problems of air pollution and its environmental consequences due to lack of compliance with standards in manufacturing cars and their fuel consumption, awareness of the exhaust of cars and its comparison with environmental protection standards and technical examination is essential for controlling and reducing air pollution. Therefore, the present study was carried out with the aim of studying and comparing the amount of CO, CO2 and HC emissions from light vehicle exhausts in the period of 1383-1389 based on technical and environmental inspection standards in Shiraz. Also, the relationship between the year of construction of the car and the amount of output of these pollutants was discussed.
Materials and Methods: In this research, the amount of exhaust emissions (carbon monoxide, carbon dioxide and uncured hydrocarbons) from the exhaust of 858 vehicles included models Peugeot 206, GLX and Pars that were referred to the technical examination center during 5 months in Shiraz between the years 1383-1389 was investigated. Also, the relationship between the year of production and the amount of output of these pollutants was studied. Data analysis was done using SPSS software and Microsoft Excel software was used for drawing graphs.
Results: The results showed that there was a significant and negative correlation between the year of manufacture of the vehicle and the reduction of CO and HC. As the year of construction increases, the amount of pollutants is decreasing. Also, this relationship was positive and significant between the year of manufacture and CO2. Also, the exhaust pollutants (CO and CO2) from the Peugeot GLX exhaust system were lower than Peugeot Pars and 206, and the lowest amount of HC was observed in Peugeot 206.
Conclusion: In general, the exhaust emissions of all three cars were at the standard Euro 2 and technical examination.
Mohamad Amin Daneshfar, Mehdi Ardjmand,
Volume 13, Issue 2 (8-2020)
Abstract
Background and Objective: Improper landfilling of drilling waste has adverse effects on the environment and human health. This study aims to select suitable landfills for oil and gas drilling waste on Qeshm Island using GIS and AHP.
Materials and Methods: In this study, a weighted map was prepared based on each criterion affecting the site location. In the next step, each of the prepared layers was ranked. Higher rating indicated the importance of each layer while lower values corresponded to their insignificane.
Results: The reasults of this study showed that the distance from population centers (weight 0.222), communication network (roads) (weight 0.169) and surface waters (weight 0.142) are important parameters for landfill siting. The combination of ranked maps and the weights obtained from AHP, divided the landfill area to “completely suitable”, “suitable”, “relatively suitable”, “relatively unsuitable” and “unsuitable”.
Conclusion: Priorities identified in “completely suitable” areas can be the basis for decision-making, and appropriate locations can be on the agenda as next priorities.
Mohamad Amin Daneshfar, Mehdi Ardjmand, Seyed Aboutaleb Mousavi Parsa,
Volume 13, Issue 4 (2-2021)
Abstract
Background and Objective: Improper treatment of PAHs in oily drilling cuttings cause adverse effects on the environment. The present study aimed to investigate the efficiency of two bioremediation and fixation methods for PAHs removal from oily drilling cuttings. The efficiency of the two mentioned methods were analyzed and subsequentelythe more effective one was selected using environmental protection approach.
Materials and Methods: The sampling of oily drilling cuttings at the beginning and end of the treating process was performed for the studied methods, according to standard protocols. The amounts of PAHs, are determined by Soxhlet apparatus and gas chromatography-mass spectrometery.
Results: The results showed that the removal efficiency of PAHs from oily drilling cuttings was 97% (440.3 mg/kg) for bioremediation and 78% (354.7 mg/kg) for the fixation method, respectively. The findings showed that the bioremediation method provides the standard requirements for the discharge of PAHs to the environment.
Conclusion: Bioremediation is more effective than the fixation method for removing PAHs compounds and exhibits higher environmental protection performance.
Mehrnoosh Abtahi, Mahmood Alimohammadi, Reza Saeedi, Ramin Nabizadeh, Masoomeh Askari, Babak Mahmoudi, Maryam Ghani,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: The aim of this study was to evaluate the chemical and microbial quality of bottled water in Iran and to calculate the water quality index (WQI).
Materials and Methods: Different brands of bottled water (4 samples from 71 brands) were randomly collected from the market. Chemical and microbial characteristics of the samples were examined and determined. Finally, the calculations related to the WQI index were performed and the water samples were classified as excellent, good, poor, very poor and unsuitable.
Results: None of the samples exhibited concentration of heavy metals beyond Iranian water standards, and the concentration of sulfate (SO4), chloride (Cl) and fluoride (F) did not exceed international standards. However, in some samples, nitrite (NO2) and nitrate (NO3) concentrations were higher than recommended standards. With Regard to other water quality parameters, 8% to 89% of the samples exhibited concentration higher than the values provided on the water bottle label. 5 species of different bacteria were found in 15 water samples. According to the WQI index, about 63% of the samples were of excellent quality. Also, the water quality of 34% and 3% of the samples fell in good and poor quality categories, respectively. None of the bottled water samples was of very poor quality.
Conclusion: The quality of bottled water investigated in this study was generally suitable, but due to the wide range of bottled water in Iran based on brand and seasons, continuous evaluation of water treatment methods in companies and careful monitoring of chemical and microbial quality of bottled water in all seasons is recommended.
Naseh Shalyari, Ramin Nabizadeh, Mohsen Vijeh, Omid Nasri, Farnaz Saeidi, Masud Yunesian,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: In assessing the risk of community related poisonings due to insecticide use a practical and effective tool is needed to evaluate insecticides Therefore, the present study aimed to investigate the reliability and validity of exposure patterns to insecticides.
Materials and Methods: In this study, after performing validity, translation of the final version of the questionnaire was prepared based on the agreement of experts in accordance with the study population. In the next step, the reliability validity of the study was investigated. Finally, the questionnaire reliability was evaluated by test-retest method at a 14-day interval with the participation of 40 resident of Tehran city.
Results: The results of R-CVI and C-CVI were evaluated as good for all of items (between 0.91 and 0.97). The total CVI index for the whole questionnaire ranged from 0.75 to 1 in terms of proportion and transparency. On the other hand, the total coefficient of kappa for reliability of the questionnaire was obtained between 0.89 and 1.
Conclusion: Considering the acceptable validity and reliability level of the Persian version, this questionnaire is a valid tool and can be applied to assess the risk of insecticide use and its associated injuries in the Iranian population.
Mohammad Rezvani Ghalhari, Benyamin Ajami, Esfandiar Ghordouei Milan, Moein Khalooei, Amir Hossein Mahvi,
Volume 14, Issue 4 (3-2022)
Abstract
Background and Objective: Groundwater is the primary water source for drinking and agricultural activities in arid and semi-arid regions. Rainfall, land use, geological structure, aquifer mineralogy, and duration of water contact with the environment in the basement are the main factors affecting the chemical quality of groundwater. This study aimed to determine the physicochemical properties of groundwater by considering the water quality index (WQI) and its quality assessment for drinking water.
Materials and Methods: In this study, 71 wells of Kashan were sampled in summer 2020 with three samplings from each well, and physical and chemical parameters were studied, water quality index was determined using mathematical methods, and Pearson correlation coefficient was determined. Correlation analysis was used. Finally, the collected data were analyzed using SPSS-16 software, Excel 2013, and statistical tests.
Results: The calculated WQI of 71 wells in Kashan shows that 67% of the wells were of excellent quality, and 33% were of good quality in terms of water quality parameters. In total, out of 71 samples, the numerical index of water quality was 44.94, and the water was of excellent quality.
Conclusion: The results show that ions such as sodium, sulfate, and chlorine are directly related to the counting in an area and increase the concentrations of EC and TDS, and can impair the balance of anionic and cationic aqueous solution. It was also found that more than half of the wells have excellent quality due to using water wells for drinking.
Mohammad Javad Zoqi, Mohammad Amin Rasooli, Behnoosh Khataei, Mohammad Reza Doosti,
Volume 16, Issue 2 (9-2023)
Abstract
Background and Objective: Mining is one of the important economic activities all over the world. It causes the release of various emissions, especially heavy metals in the soil, due to the weak exploitation and improper disposal of mineral wastes. Different techniques are used for soil remediation and heavy metal extraction; including the electrokinetic method (so effective in fine-grained soils). In this research, the electrokinetic process was used to extract copper from the waste of the mine in Birjand.
Materials and Methods: In this research, a 24 cm long PVC reactor was used. The retention time was 2, 4, and 6 days and the voltage gradient was 1 V/cm. Graphite electrodes and electrolyte solutions of nitric acid and citric acid were investigated for copper extraction. The electrode polarity was alternately changed in order to pH control and improve the extraction process.
Results: According to the results, the highest removal efficiency (54%) was obtained after 6 days using 0.1 M citric acid and distilled water in the anode and cathode reservoir, respectively. Further, by 24-hour polarity reversing, the copper removal efficiency increased to about 60%.
Conclusion: The use of citric acid in anode was more effective than nitric acid, leading to more copper removal. In addition, by periodically polarity change and keeping the soil pH in the neutral range, further dissolution of the metal and reducing its sedimentation in the soil occurred. As a result, the rate of its transfer outside the treatment area and removal efficiency increased.
Ebrahim Rahimi, Mohammad Amin Heidarzadi, Najmeh Vahad Dehkordi,
Volume 16, Issue 3 (12-2023)
Abstract
Background and Objective: Aflatoxins are secondary metabolites of fungi, which can have very dangerous consequences for human health in addition to spoiling food and changing organoleptic properties. Aflatoxin entering the body and targeting the liver as the main organ involved can cause liver and blood cancer. Hence, the aim of the present study is to measure aflatoxin B1 in corn flour and wheat flour supplied in Shahrekord using ELISA method in 2022.
Materials and Methods: In this study, 40 samples of flour, including 20 samples of corn flour and 20 samples of wheat flour, were randomly sampled from the supply centers and sent to the food hygiene laboratory to track and determine the amount of aflatoxin B1.
Results: The results showed that all samples of wheat flour and corn flour contained aflatoxin 1B. The average of aflatoxin B1 in wheat flour and corn flour was calculated as 2.58 ± 0.95 and 3.47 ± 2.07 (µg/kg) of the sample, respectively; Among the 20 examined samples of corn flour, the concentration of aflatoxin B1 ranged from 3.4 (µg/kg) to 1.9 (µg/kg) and in 20 samples of wheat flour (µg/kg) from 7.90 to (µg/kg) was 1.4; Therefore, the concentration of none of the samples was higher than the Iranian standard.
Conclusion: The occurrence of aflatoxin B1 in all the samples examined in the current study is lower than the risk range determined by the Iranian standard, so in this case, its aasociated high risk does not threaten the health of consumers.