Search published articles


Showing 235 results for Co

M Shirzad Siboni, M.r Samarghandi, M Farrokhi, H Piri Dogahe, M Zarrabi,
Volume 4, Issue 3 (10-2011)
Abstract

Background and Objectives: Industrial wastewater included the cyanide is one of the important sources of environmental pollution which founded in Industrial wastewater which are harmful for human health and environment. Therefore, the purpose of this research that was fundamental designed is investigation of Removal of cyanide from aquatic solution by using of iron and copper powder in experimental scale.
Material and Methods: At first, pilot was designed. Then, acquired pH optimum equal to 2,7 for copper and iron by variation pH= (2,4,6,8,12) and constant other parameters. The effect of initial cyanide concentration (40,60,80 mg/l), initial iron and copper dosage (0.08-1 g/100CC) and contact time (15-12 min) studied at the constant of optimum pH. 
Results: The result showed removal efficiency Increased from 46.6% to 90.56% and 31% to 93.78% for copper and iron by increasing of contact time from 15to 120 minute in constant conditions, respectively. Also result showed Removal efficiency decreased and increased by increasing initial cyanide concentration and initial iron and copper dosage. The results showed equilibrium data were explained acceptably by Langmuir isotherms and kinetic parameters were obtained by application of Langmuir&Hinshelwood equation.
Conclusion: The results showed that removal of cyanide can be quick and effective done by iron and copper in experimental scale.


A Mirzaei, A Takdastan, N Alavi Bakhtiarvand,
Volume 4, Issue 3 (10-2011)
Abstract

Backgrounds and Objectives: Selection of  proper coagulants for turbidity removal and determination of effective methods to reduce coagulants dose and related costs in water treatment plants is of critical importance. The present study investigates the effect of returned sludge on improving the performance of poly-aluminum chloride (PAC) in turbidity, coliform bacteria, heterotrophic bacteria removal from drinking water during rapid mixing phase.
Materials and Methods: In order to determine the optimal returned sludge volume injected during rapid mixing with PAC for turbidity, total coliform and hetrophic bacteria, experiments were conducted based on variables such as injected silt volume (from 0 - 125 ml), and varying turbidities from 58 - 112 NTU. At the end of each JAR experiments, remaining turbidity , microbial parameters of samples were measured . Coagulant efficiency in turbidity removal and microbial parameters were determined by Covariance, Duncan analyses and graphs were drawn by MS Excel . The results statistically showed significant among variables (P<0.05).
Results: The results showed that the maximum turbidity removal efficiency of 98.92 at 30 ppm was 10 ml while the maximum turbidity removal efficiency of 98.31 at 10 ppm was 4 ml. The maximum total coliform removal efficiency  of 95.68 obtained for 10 ppm in 10 cc injected sludge volume.
Conclusion: This study shows that addition of returned sludge to flash mixing can reduce the turbidity of samples.


M Khodadadi, M.t Samadi, A.r Rahmani,
Volume 4, Issue 3 (10-2011)
Abstract

Background and Objectives: Water pollution by pesticides has adverse effects on the  environment and  human health, as well .In recent years, advanced oxidation processes,  have been gone through to a very high degree for pesticides removal. Poly-Aluminum chloride (PAC) used  for water treatment, can be effective on pesticides removal. The aim of this research was to study the use of UV/O3 and PAC in the removal of pesticides from drinking water.
Materials and Methods: In  this descriptive- analytical survey, specific concentrations of pesticides (1,5,10,15,20 ppm)namely Diazinon, Chlorpyrifos, Carbaril were prepared through addition to deionized water. Dichloromethane was used for samples&apos extraction, samples extracted with Liquid- Liquid & Solid-phase extraction ,  finally entered  bath  reactor at pH (6,7,9)  .The samples then exposed to UV/O3at contact time  of (0.5,1,1.5 and 2 hours) . In the PAC pilot , the effects of various concentrations of  pesticides, and PAC - ranging (12/24 and 36 ppm)  were  investigated  for the efficacy of pesticides removal. All samples analyzed by GC/MS/MS and HPLC.
Results: It was found that  in UV/O3 reactor, with the rise of  pH, decrease in  pesticides concentration, and rise of contact time, the efficiency of removal  increased too. In  the PAC pilot, increase in  PAC concentration  and decrease  in pesticides concentration , both increased the efficiency. Besides, both of the methods  showed high efficiencies in the removal of both pesticides,i-e. halogenated Organophosphorus (Chlorpyrifos) , non- halogenated Organophosphorus (Diazinon) at the degree of over (%80 ) In case of carbamate pesticides (e.g. Carbaril) efficiency was over (>%90). One-Way Anova & Two -Way Anova were used to analyze the obtained data.
Conclusion: According these results these two methods  are suggested for the removal of pesticides from aqueous solutions.


J Azami, A Esmaili-Sari, N Bahramifar,
Volume 4, Issue 4 (3-2012)
Abstract

Background and Objectives: The heavy metals pollution in aquatic ecosystems especially mercury, always makes concern about health of aquatic organisms. So, the purposes of this study were determination of total mercury in different tissues of the three species of the most important water birds at north of Iran and comparison with world health standards.
Materials and Methods: Generally, 51 birds were captured randomly. Then, samples of feather, liver, kidney and muscle were taken and the mercury concentrations were determined by Advanced Mercury Analyzer (Model Leco, AMA 254).
Results: The most amount of accumulated mercury was in great cormorant's liver (piscivorous species). Means of mercury concentration in liver of great cormorant, mallard, and coot were 14.80, 2.05, 0.18 in kidney 12.00, 1.90, 0.17 in feather 6.57, 1.09, 0.23 and in muscle 8.67, 0.26, 0.09 mg/kg dry weight respectively. Means Comparison showed significant difference among all tissues (P < 0.05), But there were not significant difference between sexes (P > 0.05)
Conclusion: The levels of accumulated mercury in all tissues of great cormorant were more than the established limits by WHO, FAO and EPA. The other species had less use limitation, but mercury concentration in mallards was considerable. These results can be a serious warning for consumers these birds, especially vulnerable people.


Hamid Reza Salari-Joo, Mohammad Reza Kalbassi, Seyed Ali Johari,
Volume 5, Issue 1 (4-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Nanotechnology defined as understanding and controlling of materials at dimension between 1-100 nm, which show unusual physical and chemical properties. With Increasing development of nanotechnology, concerns associated with release of materials containing nanoparticles into the environment is rising. The purpose of this study is investigation of salinity effect on the acute toxicity of silver nanoparticles in rainbow trout fry (Oncorhynchusmykiss).
Materials and Methods: In order to conduct the toxicity tests, the Caspian Seawater(12±0.2 ppt) and (0.4 ppt) as sources of brackish water and freshwater were used, respectively. Toxicity of silvernano particles were evaluated in brackish water and freshwater at concentrations of1, 2, 4, 8, 16, 32and64ppm and  0.12, 0.25, 0.5, 1, 2, 4 and8 ppm, respectively. In addition, in order to investigate the quality of the used silver nanoparticles the Zetasizer, ICP, and TEM method were applied.
Results: Results of 96-hour median lethal concentration(LC50 96h), showed that toxicity of silver nanoparticles for rain bow trout fry in brackish water is 12 times less than its toxicity in freshwater.
Conclusion: According to the toxicity categories, analysis of the results showed that, for rainbow trout fry (1g), silver nanoparticles are classified as highly toxic agent substances in fresh water, and little toxic in brackish water, respectively.


Majid Kermani, Mitra Gholami, Abdolmajid Gholizade, Mahdi Farzadkia, Ali Esrafili,
Volume 5, Issue 1 (4-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Phenols in trace quantities are usually present in the treated effluent of many wastewater-treatment plants. Phenol compounds even at low concentration can cause toxicity, health and significant taste and odor problem in drinking waters. This research focuses on understanding the sorption process and developing a cost-effective technology for the treatment of water contaminated with phenolic compounds, which are discharged into the aquatic environment from a variety of sources. In order to remove phenolic compounds from water, a new natural sorbent, rice husk ash, was developed.
Materials and Methods: Removal of phenol, 2-chlorophenol and 4-chlorophenol were characterized by spectrophotometric technique at wavelengths of 269.5, 274 and 280 nm, respectively, under batch equilibrium conditions and via changing the parameters of contact time, initial pH, and initial concentration of adsorbates and dosages of sorbent. Finally, the results were analyzed by the kinetic and isotherm models.
Results: in this study, the equilibrium time was found to be 240 min for full equilibration of adsorbates. Removal percent of 2-chlorophenol was lower than two others. The maximum removal of phenol, 2-CP and 4-CP was observed at an initial pH of 5. The percentage removal of these phenolic compounds increased with increasing adsorbent dose and decreasing initial concentration. In kinetics studies, correlation coefficient and ARE factor showed that the sorption of phenol (R2=0.9999), 2-chlorophenol (R2=0.9992) and 4-chlorophenol (R2=1) fitted by pseudo second order model. Isotherm studies also revealed that, Langmuirmodel for phenol (R2=0.9499), Freundlich model for 2-chlorophenol (R2=0.9659) and 4-chlorophenol (R2=0.9542) were the best choices to describe the sorption behaviors.
Conclusion: Sorption process is highly dependent on the pH and it affects adsorbent surface characteristics, the degree of ionization and removal efficiency. At high pH hydroxide ions (OH-) compete for adsorption sites with phenol molecules. The sorption was done rapidly and a plateau  was reached indicating the sorption sites occuupied till  they were saturated. Since the increasing sorbent dose would improve sorption site, its increasing enhances phenolic compounds removal.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Fahim Amini, Masoud Yunesian, Mohammad Hadi Dehghani, Nima Hosseni Jazani, Ramin Nabizadeh Nodehi, Maasoumeh Moghaddam Arjomandi,
Volume 5, Issue 1 (4-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Nosocomial infection is the cause of deaths, morbidity, higher costs and increased length of stay in hospitals. Correct and appropriate use of antiseptic and disinfectants play an important role in reducing infections. In this study the efficacy of antiseptics on bacteria causing hospital infections has been studied.
Materials and Methods: This study was conducted in the laboratory of Imam Khomeini Hospital of Uremia. In this study the Antimicrobial activity of Descocid, Korsolex basic, Mikrobac forte and persidin 1% was studied against bacteria causing hospital infections such as Enterobacter aeruginosa 1221 (NCTC 10006), Staphylococcus epidermidis (PTCC: 1435 (Cip81.55) and Pseudomonas aeruginosa Strain PAO1. Sensitivities of bacteria were determined by Minimum inhibitory Concentration (MIC) and Minimum bactericidal Concentration (MBC) antiseptics. In the second stage, the concentration of antiseptics was prepared according to the manufacturer's suggested protocol and the effect of antimicrobial agents were studied at the certain concentration and contact time.
Result: All disinfectants (Descocid, Korsolex basic, Mikrobac forte) concentration and contact time, Accordance with the manufacturer's brochure, had inhibitory effect on all bacteria. That this is consistent with the manufacturer's brochure. Persidin one percent in concentration of from 2 and 4 V/V % and exposure time 5 minutes could not inhibit the growth of bacterial. But at concentrations of 10 and 20% respectively 15 and 30 minutes exposure time, all three types of bacteria can be inhibited, which is consistent with the manufacturer's claims.
Conclusion: In this study, the efficacy of antiseptics was determined with the Micro-dilution method recommended by the NCCLS. Korsolex basic, weakest antiseptics (the highest MIC) for the inhibition of three bacteria was determined. But Between all four antiseptics (according to manufacturer concentration), Only one percent Percidine 2 and 4 V/V %  in consumer dilution and 5 minutes exposure time failed to inhibit the growth of Pseudomonas aeruginosa, Staphylococcus epidermidis and Enterobacter aeruginosa.


Ramin Nabizadeh, Masoud Binesh Brahmand, Kazem Naddefi, Ali Reza Mesdaghiniya,
Volume 5, Issue 1 (4-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Guilan province, with unique environmental values ​​of the Caspian Sea is located in the southwest of Caspian Sea. Disposal of untreated domestic sewage, industrial and agricultural surface water cause pollution of the Caspian Sea region and endanger the health of swimmers. This study performed to determine the microbial contamination of coastal water in Guilan. 
Materials and Methods: In this work, 21 sampling point in the Caspian Sea littoral provinces of Guilan were selected and microbial contaminations were assessed using   microbial indicators of fecal and total coliform. Parameters such as pH, temperature, and turbidity also monitored during the year. In this study, 122 samples were taken and then analyzed by statistical software.
Results: The results showed that the average values of total coliform and fecal coliform were 234.8 and  60 MPN per 100 ml, respectively. The fecal pollution appeared to be high in some stations. Also significant relationship between temperature, turbidity and microbial contamination was observed (P< 0.05).
Conclusion: The results revealed high total coliform in the two stations. The average fecal coliform of six stations were higher than the local standards.

 

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Ruhollah Rostami, Ahmad Jonidi Jafari, Roshanak Rezaee Kalantari, Mitra Gholami,
Volume 5, Issue 1 (4-2012)
Abstract

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives:Benzene, toluene and Xylenes (BTX) are organic pollutants, which are mainly associated with oil and its derivatives. BTX is environmental contaminants and considered harmful to human health. Application of surface absorbents such as zeolite is one of several methods for the removal of these compounds. In this study, BTX compounds' removal efficiencies were investigated and compared by using clinoptilolite type zeolite and zeolite with copper oxide nanoparticles.
Materials and Methods: In this study, the modified zeolite by hydrochloric acid in the grain size 1-2 mm and modified zeolite with nano particle of copper oxide were used.  Artificially- Contaminated Air flow was used continuously .To determine BTX concentrations, samplings were done by charcoal tube in current input and output. The concentrations of contaminants were determined by gas chromatography with FID detector.
Results: Removal efficiency of benzene, toluene, p-xylene, m-xylene and o-xylene by clinoptilolite were 78.3%, 62.1%, 32.2% 32.15% and 18.8%, respectively. For the clinoptilolite containing copper oxide nano particles efficiency were 25.42%, 35.65%, 36.33%, 33.24% and 29.39%, respectively. Average removal efficiency of BTX compounds observed when the zeolite without nanoparticles used (43.31%) was more than zeolite with nanoparticles (32%). The results showed that the concentration of CO2 in the outlet air of the zeolite-containing nanoparticle (550 ppm) was more than the zeolite without nanoparticle (525 ppm).
Conclusion: Results showed that adding nanoparticles to the zeolite, although the removal efficiency of benzene and toluene can be reduced. The results showed that adding nanoparticles to the zeolite, although can be reduced removal efficiency of benzene and toluene, which may be due to occupying or blocking of the pollution absorption sites by the nanoparticles on the zeolite, but It cause promote more catalytic effect of zeolite in the decomposition process of contaminants by breaking the molecules of pollutants and their further degradation progress is done for conversion to carbon dioxide


Mahmood Alimohamadi, Ebrahim Molaee Aghaee, Ramin Nabizadeh Nodehi, Gholam Reza Jahed, Sasan Rezaee, Akbar Goldasteh, Shahrokh Nazmara, Hassan Aslani,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Heavy metals including antimony and cobalt as two contaminant factors leach from polyethylene terephthalate packages into water under some conditions. Therefore, their detection was concerned at different storage conditions.
Materials and Methods: Five time-temperature treatments were carried out for 5 water samples. Storage conditions were defined as following: at outdoor and sunlight ambient temperature, room temperature, and at 40˚C at different intervals for 8 weeks, at 65˚C for 6 weeks and 80˚C for 7 days. Detection was performed by ICP-AES method and the data analysis was processed by SPSS software.
Results: Antimony concentration increased by storage time at all temperatures and for all samples, however enhancing proportion was different in samples. At outdoor, 40˚C and room temperature, concentration increase was below the MCL by the end of storage period. But at 65˚C and 85˚C, antimony concentration exceeded MCL by study time and the difference between samples 4 and 5, for example, was significant (p≤0.05). Cobalt concentration at the beginning and during the study was also too less and lower than the detection limit.
Conclusion: By increasing temperature and time, leaching of antimony into water increases. Moreover, sunlight has effect but not noticeable at the temperature of present study. In this study, blue or clear packaging had no significant effect on antimony leakage (P>0.05).


Edris Bazrafshan, Ahmad Joneidi Jaafari, Ferdos Kord Mostafapour, Hamed Biglari,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives:  Presence of humic acids in water resources is important because it is a precursor to disinfection by-products (DBPs) and affects many treatment processes. In this study, we investigated the performance of electrocoagulation process duad with hydrogen peroxide (creating Fenton process) in removal of humic acids (HA) from aqueous environment.
Materials and Methods: The experiments were performed using a 1 L bipolar batch reactor (covered with the aluminum foil) equipped with iron electrodes and connected to electric source having electrical potential 10 V in bipolar mode. First, reactor was filled up using aqueous solution containing 20 mg/L HA. Later, several working parameters, such as initial pH (3, 5, 7, and 8), electrical conductivity produced from adding 1, 1.5, 2 and 3 g/l KCl and reaction time were studied to achieve the highest humic acid removal capacity. To follow the progress of the treatment, hydrogen peroxide (50 mg/l) was added to reactor and then samples of 10 ml were taken at 5, 15, 30, 45, and 60 min and then filtered (0.45 μ) to eliminate sludge formed during electrolysis. Finally, humic acid and iron concentration was measured using TOC analyzer and atomic absorption method respectively.
Results: Results of this study showed that the most effective removal capacities of humic acid (97.19%) could be achieved when the pH was kept 5(KCl 3g/l and reaction time 60 min). The share of Fenton and electrocoagulation process was %7.9 and %92.1 respectively. In addition, our results indicated that the removal efficiency of humic acid with increase of pH and electrical conductivity parameters decreases and increases respectively.
Conclusion: It can be concluded that the Fenton process duad with electrocoagulation process has the potential to be utilized for cost-effective removal of humic acid from aqueous environments.


Mohammad Malakootian, Hassan Izanloo, Maryam Messerghany, Mohammad Mahdi Emamjomeh,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: leachate from municipal solid waste landfill is a strong sewage having hazardous toxic substances. It should be treated by choosing a simple, economical, and eco-friendly method. The aim of this study is reduction of COD from the Qom City landfill leachate using electrocoagulation process.  
Materials and Methods: The experimental study was carried out at bench scale using a batch reactor during 2010.  We used a Plexiglas reactor having 0.7 liter capacity, containing nine plate aluminum electrodes connected to a DC power supply (10-60V, 1-5A). Samples were collected in the middle of cell at regular (every 10 minutes) time intervals. The concentration of COD was determined using a COD analyzer. The effects of different parameters including current density (52.08, 69.44 mA/cm2), electrolyte time (10, 20,30,40,50 and 60 min), and voltage range (10, 20, 30, 40, 50 and 60 volt) were investigated.
Results: For a voltage of 60 V and electrolysis time 60 min, the COD removal efficiency was increased from 48.7% for 52.08 mA/cm2 to 77.4% for 69.44 mA/cm2. The highest TSS removal efficiency was obtained at the largest current input when the voltage and electrolysis time were kept at 60V and 60 min respectively.
Conclusion: The results showed that the highest COD removal efficiency (77.4%) was obtained when the current density was 69.44 Ma/cm2 and the voltage and electrolysis time were kept at 60V and 60 min respectively. Power consumption for this removal level was measured to be 431.26 kWh per kg COD removal. The results obtained revealed that the electrocoagulation technology is an effective treatment process for landfill leachate.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Ramin Nabizadeh Nodehi, Hassan Aslani, Mahmood Alomohammadi, Reza Nemati, Kazem Naddafi, Maryam Ghany,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Irrigation of agricultural crops using wastewater will increase, in some cases, their growth by 40 to 60 percent. However, this has a high risks for human health because of the presence of higher number of pathogenic organisms. The main purpose of this study was to investigate the feasibility use of Fenton and modified Fenton with copper for the disinfection of raw wastewater.
Materials and Methods: After primarily laboratory physicochemical and biological analysis, the disinfection process was performed in three different phases in each process. First, the disinfectants were injected separately, then we performed disinfection using Fe++ and cu++ ions combined with hydrogen peroxide in order to determine synergistic effect of each catalyst. Direct method was used for fecal coliforms counting. 
Results: Hydrogen peroxide maximum efficiency for inactivation of fecal coliforms was only 0.66log inactivation. Fenton and modified Fenton with copper ions showed a remarkable effect on the bacterial inactivation so that Fenton and modified Fenton with 1 and 2 mg/l of Cu++ inactivated coliforms by 4.73, 3.28, and 4.88 log respectively.
Conclusion: Application of HP alone for the disinfection of raw wastewater is not practicable due to low observed efficiency. However, its combination with ions such as Fe++ and Cu++ increases HP performance in disinfection and has a notable synergistic effect on HP  disinfection power, where, in the presence of each catalyst, hydrogen peroxide can reduce the fecal coliforms of raw wastewater to meet the Iranian Environmental Protection Agency Standards.


Kazem Naddafi, Mehran Mohammadian Fazli, Ali Reza Mesdaghinia, Simin Nasseri, Mahnaz Mazaheri Assadi, Masoud Yunesian,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Environmental pollution and health risks of dyestuffs extensively are caused by many industries. Nonbiodegradability of dyes is important so that different methods are studied for removing them. The use of white rot fungi is promising technique in this regard. Therefore, objective of this work is to investigate Rimazol Brilliant Blue Royal decolorization by immobilized Ganoderma sp. in sodium alginate from aqueous solution.
Material and Methods: This is an experimental study. First, the nutritional, environmental, and operational conditions of decolorization process were optimized. Then, efficiency of immobilized fungal cells was investigated. Experimental designs were provided using fractional factorial methods and quadratic model was fitted on decolorization data by MiniTab software.
Results: Our findings showed that type and concentration of carbon source, temperature, and pH were the most important factors affecting decolorization and statistically significant. Optimal conditions to 95.3 percent color removal were: glycerol as carbon source at 19.14 g/L temperature, 27 oC and initial pH, 6.26. Moreover, decolorization efficiency increased from 75 percent up to 95 percent by improving process and fungal immobilization.
Conclusion: Ganoderma fungus has suitable potential to decolorization. Besides, optimization and cell immobilization can improve its capability. Application of experimental design to research methodology is important because of decreasing in experiments and saving resources. It is suggested to use these potentials in environmental pollution control.


Mohammad Sadegh Hassanvand, Ayoub Torkian, Mohammad Reza Sahebnasagh, Kazem Naddafi, Mohammad Kazem Moayyedi,
Volume 5, Issue 3 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Wind-induced particulate air pollution from iron ore piles can causes environmental and economic problems for steel industries. In this experimental study, the effectiveness of various additives in reducing particulate air pollution from iron ore piles was investigated in a laboratory wind tunnel.
Materials and Methods:  The experimental set up consisted of a prismatic pile and a wind tunnel. Four different wind speeds of 4.3, 5, 7 and 11 m/s was used in the study  Municipal water, quick lime (2%), seawater, treated industrial wastewater and Polylatice (0.25%) were used as additives to stabilize the upper layer of the pile.
Results: Emission factors for non-stabilized (without additive) piles at 4.3, 5, 7 and 11 m /s wind speeds were 46.7, 73.2, 1025.4 and 13768.7 g/m2, respectively. Stabilized piles with 2.6, 2.7, 2.8, 2.7 and 2.8 percent additive (moisture content of the upper layer of the pile) for municipal water, Polylattice (0.25%), treated industrial wastewater, seawater and quick lime (2%) indicated a decrease of 99.4%, 100%, 99.3%, 99.5% and 99.5% particulate emission reduction, respectively.
Conclusions: Proper selection and use of additives on iron piles has the potential for decreasing  more than 99% of the wind-induced particulate emissions. Operational factors such as covered area, spray frequency, pile geometry, seasonal adjustments related to ambient temperature and humidity, wind speed and operator training need to be an integral part of the pollutant reduction program.              


Mohmmad Reza Massoudinejad, Hajar Sharifi, Ashraf Mazaheri Tehrani,
Volume 5, Issue 3 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: The presence of chemical dyes in the water resources not only pollutes them, but also brings about death of organisms and serious indemnities to the environment through stopping oxygen production and preventing penetration of the sunlight. In this study, we investigated the efficiency of the electrolysis process for decolonization of phenolphthalein and phenol red from aqueous environment.
Materials and Methods: The experiments were conducted in an electrochemical reactor having a working volume of 1 liter equipped with 2 graphite electrodes. This study was conducted at laboratory scale. Samples were prepared by dissolving two phenol red and phenolphthalein dyes in drinking water. Then, the effect of operating parameters such as voltage, inter-electrode distance, and NaCl concentration on the complete dye removal was determined considering optimum retention time using  Factorial variance analyses and the graphs were plotted using MS Excel software.
Results: the results showed that the optimum conditions for completely removal of phenolphthalein was achieved applying a voltage of 48 V, the retention time of 9 minutes, 5 cm inter-electrode distance, and the salt concentration of 1.5 g/l, whereas, complete removal of phenol red was achieved applying a voltage of 48 V, the retention time of 8 minutes, 5 cm inter-electrode distance, and the salt concentration of 2 g/l. Under these conditions, COD removal efficiency for phenol red and phenolphthalein was 85 and 80 percent respectively.
Conclusion: This study revealed that electrolysis process is an effective method to remove both phenolphthalein and phenol red dyes from effluent, because it can completely remove the dyes in a short time.


Edris Bazrafshan, Ferdos Kord Mostafapour, Mahdi Farzadkia, Kamaledin Ownagh, Hossein Jaafari Mansurian,
Volume 5, Issue 3 (10-2012)
Abstract

Background and Objectives: Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat, and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards.
Materials and Methods: At present study, slaughterhouse wastewater after initial analysis was tested for survey of coagulation process using Poly aluminum chloride (PAC) at various doses (25-100 mg/L). Then we measured the concentrations of wastewater pollutants (BOD5, COD, TKN, TSS and fecal Coliforms). Later, we transferred the effluent to the electrocoagulation unit and we evaluated the removal efficiency of pollutants in the range 10 to 40 volts of electric potential during 60 min.
Results: It was found that the efficiency of chemical coagulation process using poly-aluminum chloride (PAC) as coagulant increases with increasing doses (from 25 to 100 mg/L) we achieved maximum removal efficiency during the chemical coagulation for parameters of BOD5, COD, TSS, and TKN at 100 mg/L of PAC equivalent to 44.78%, 58.52%, 59.9%, and 39.58% respectively. Moreover, the results showed that with increasing the electric potential and reaction time, the yield increases linearly so that maximum removal efficiency at a dose of 100 mg/L PAC, an electrical potential of 40 volts and a reaction time of 60 minutes for the parameters BOD5, COD, TSS, and TKN was 99.18% 99.25%, 82.55%, and 93.97% respectively.
Conclusion: The experiments demonstrated the effectiveness of combined chemical coagulation and electrocoagulation processes for pollutants removal from the slaughterhouse wastewaters. Consequently, this combined process can produce effluent compliance with the effluent discharge standards.


Mohamad Taghi Samadi, Roghaye Nourozi, Mohamad Hadi Mehdinejad, Reza Aminzadeh,
Volume 5, Issue 4 (2-2013)
Abstract

Backgrounds and Objectives: Determination of arsenic(As) in drinking water has received increasing interest due to its detrimental effects on health. The aim of this research is to investigate effect of coating coral limestone using aluminum sulfate as an adsorbent on the arsenic(V) removal efficiency from aqueous solution. Materials and Methods: In this laboratory scale study, we prepared coral lime granules using mesh 30 during several stages. Then, we investigated the arsenate removal efficiency under different conditions and changing main factors including pH, contact time and amount of no coated and aluminum sulfate-coated adsorbent. Moreover, we fitted our results with Langmuir and Freundlich models and kinetic data with pseudo- first order, pseudo- second order and modified pseudo- first order models. Results: We found that increasing pH from 3 to 10 at arsenate concentration of 500 ppb and 5 g/l adsorbent and 120 min contact time, removal efficiency for no coated and coated adsorbent was reduced from 100 to 86.2% and from 100 to 92.2% respectively. Increasing concentration of both adsorbents from 1 to 5 g/l at contact time 120 min increased the removal efficiency from 76 to 99.2% and from 66.3 to 91.1% respectively. Arsenate removal efficiency was directly proportional with the amount of adsorbent and contact time and reversely proportional with the initial concentration of arsenate and pH. The removal efficiency of the coated adsorbent was more than uncoated adsorbent. Langmuir was the best sorption isotherm model for arsenate in these two processes and absorption kinetic was well described with second order models. Conclusion: Excellent removal efficiency, cost-effectiveness process, and lack of environmentally harmful substances make application of the Persian Gulf offshore corals a reasonable adsorbent to remove environmental contaminants such as arsenate.
Hamed Biglari, Edris Bazrafshan,
Volume 5, Issue 4 (2-2013)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Phenol is one of the most important organic chemicals presenting in water and other environments. It not only brings about hygienic problems but also results in forming 11 toxic priority pollutants in aqueous environments. Hence, the performance of electrocoagulation process using iron and aluminum sacrificial anodes was investigated for removal of phenol.
Materials and Methods: We used a glass tank in 1.56 L volume (effective volume 1 L) equipped with four iron and aluminum plate electrodes to do experiments (bipolar mode). The tank was filled with synthetic wastewater containing phenol in concentration of 5, 20, 40, and 70 mg/l and to follow the progress of the treatment, each sample was taken at 20 min intervals for up to 80 min. The percent of phenol removal was measured at pH 3, 5, 7, and 9 electrical potential range of 20, 40, and 60 volts and electrical conductivity of 1000, 1500, 2000, and 3000 µs/cm.
Results: It was found that the most effective removal capacities of phenol (95 and 98 %) could be achieved when the pH was kept 7 and 5 for iron and aluminum electrodes, reaction time  80 min, electrical conductivity 3000 µs/cm, initial concentration of phenol 5 mg/l, and electrical potential in the range of 20-60 V.
Conclusion: The method was found to be highly efficient and relatively fast compared with existing conventional techniques and also it can be concluded that the electrochemical process has the potential to be utilized for the cost-effective removal of phenol from water and wastewater.


Fatemeh Mousavi, Seyed Adel Jahed, Asadolah Rajab, Amir Kamran Nikuo Sokhantabar, Giti Kashi, Rouzbeh Tabatabaee,
Volume 6, Issue 1 (5-2013)
Abstract

Background and Objectives: Air pollution and its effects on human health had become a major concern of many healthcare centers decision makers. In this study, air pollution effect on variation of Glycosylated Hemoglobin A1C (HbA1C) level in diabetic patients was evaluated, which is a unique study in Iran and Middle East region.
Materials and Methods: During November-January 2010-11, Tehran, capital of Iran, was exposed with high levels of air pollution. A retrospective cohort study was carried out on 330 patients diagnosed with diabetes mellitus for at least 12 months referring to 3 endocrinal care clinics. A questionnaire in two demographic and diabetic related sections was prepared. The patients' HbA1C level recorded on November-January 2009-10 was compared with November-January 2010-11. Descriptive analysis and paired t-test were carried out using SPSS 18 software.
Results: The patients investigated were divided into two groups. The first group was composed of 108 patients (53.7% female and 46.3% male) with diabetes mellitus type I (Insulin Dependent), age mean of 17.22, and SD of 11.57. The second group was composed of 222 patients (58.6% female and 41.4% male) with diabetes mellitus type II (Noninsulin Dependent), age mean of 53.91, and SD of 12.12. The change of HbAIC level in both groups wa not statistically significant in first group, HbA1C level increased from 7.71 to 7.75 mg / 100 ml (P =0.828) and in second group, it increased from 7.06 to 7.08 mg / 100 ml (P = 0.798).
Conclusion: According to the results obtained, it can be concluded that relation of air pollution and HbA1C mean variation in diabetic patients was insignificant.



Page 3 from 12     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb