Background and Objective: The Goharzamin iron mine in Sirjan has the largest iron ore reserves in the Gol Gohar area. This study aimed to assess the life cycle of iron ore extraction from this mine using the Life Cycle Assessment (LCA) method due to the extensive activities in the area and the lack of comprehensive studies.
Materials and Methods: The LCA evaluated the impacts of iron ore extraction from the Goharzamin mine on human health, ecosystem quality, and resource depletion. The boundary system included the drilling and blasting processes. Following the cradle-to-gate model and an attributional approach, the production of 1 ton of iron ore was considered a functional unit. Impact and damage assessment were conducted using SimaPro software and the ReCiPE method at mid and end-point levels.
Results: The findings revealed that transportation by trucks with a capacity exceeding 20 tons accounted for the highest environmental burden in all categories (51.1%), particularly in overburden removal. The detrimental impacts of transportation on ionizing radiation (human health), land use, and freshwater eutrophication potentials (ecosystem quality) exceeded 95%. Carbon-14 emissions, agricultural land occupation, and BOD5 and COD releases resulting from iron ore extraction were identified as the key pollutants in these impact categories. The average damage to human health, ecosystem quality, and resource depletion was found to be 89.8%, 5.5%, and 4.6%, respectively.
Conclusion: To mitigate the negative impacts of transportation, it is advisable to enhance environmental sustainability by utilizing trucks that adhere to Euro 5 standards or higher, as well as exploring the use of renewable energies.