Showing 1 results for Adsorption.
Mohamad Taghi Samadi, Roghaye Nourozi, Mohamad Hadi Mehdinejad, Reza Aminzadeh,
Volume 5, Issue 4 (2-2013)
Abstract
Backgrounds and Objectives: Determination of arsenic(As) in drinking water has received increasing interest due to its detrimental effects on health. The aim of this research is to investigate effect of coating coral limestone using aluminum sulfate as an adsorbent on the arsenic(V) removal efficiency from aqueous solution.
Materials and Methods: In this laboratory scale study, we prepared coral lime granules using mesh 30 during several stages. Then, we investigated the arsenate removal efficiency under different conditions and changing main factors including pH, contact time and amount of no coated and aluminum sulfate-coated adsorbent. Moreover, we fitted our results with Langmuir and Freundlich models and kinetic data with pseudo- first order, pseudo- second order and modified pseudo- first order models.
Results: We found that increasing pH from 3 to 10 at arsenate concentration of 500 ppb and 5 g/l adsorbent and 120 min contact time, removal efficiency for no coated and coated adsorbent was reduced from 100 to 86.2% and from 100 to 92.2% respectively. Increasing concentration of both adsorbents from 1 to 5 g/l at contact time 120 min increased the removal efficiency from 76 to 99.2% and from 66.3 to 91.1% respectively. Arsenate removal efficiency was directly proportional with the amount of adsorbent and contact time and reversely proportional with the initial concentration of arsenate and pH. The removal efficiency of the coated adsorbent was more than uncoated adsorbent. Langmuir was the best sorption isotherm model for arsenate in these two processes and absorption kinetic was well described with second order models.
Conclusion: Excellent removal efficiency, cost-effectiveness process, and lack of environmentally harmful substances make application of the Persian Gulf offshore corals a reasonable adsorbent to remove environmental contaminants such as arsenate.