Search published articles


Showing 5 results for Amoxicillin

E Kalantar, A Maleki, M Khosravi, S Mahmodi,
Volume 3, Issue 3 (10-2010)
Abstract

BackgroundsAandObjectives: Pseudomonas aeruginosa and Staphylococcus aureus are important pathogens that producewidespread infections. Purpose of this studywas to evaluate the antimicrobial effect of ultrasonic irradiation (US) alone and in combination with antibiotic on antibiotic resistance Pseudomonas aeruginosa and Staphylococcus aureus.
Materials and Methods: In this study ultrasonic irradiation (US) in a laboratory-scale batch sonoreactor with low frequency (42 kHz) plate type transducer at 170W of acoustic power was used. The Water samples, were taken from different wards of the 3 teaching hospitals which were affiliated to the Kurdistan University of Medical Sciences to isolate Pseudomonas aeruginosa and Staphylococcus aureus and also to determine their antimicrobial susceptibility pattern.
Results:Our results showed that Pseudomonas aeruginosa and Staphylococcus aureus were affected by the ultrasound and the bactericidal effect increased with time.
Conclusion: It was found that P. aeruginosa was more susceptible to the ultrasonic treatment than S. aureus. The combination of US with an antibiotic (amoxicillin) enhanced killing of both bacteria over the use of US alone. There were no differences in resistance to ultrasound between isolated strains and standard strains from persian type culture collection.


B Kakavandi, R Rezaei Kalantary, A Jonidi Jafari, A Esrafily, A Gholizadeh, A Azari,
Volume 7, Issue 1 (7-2014)
Abstract

Background and Objective: Extreme use of antibiotics and discharging them to the environment lead to serious consequences. Activated carbon is the most commonly adsorbent for these contaminants but its main drawback is difficulty of its separation. The objective of this study was synthesis of magnetic activated carbon by Fe3O4 and investigating its efficiency in adsorption of amoxicillin from synthetic wastewater. Materials and Methods: Materials and Methods: Physical and structural characteristics of the adsorbent synthesized were analyzed using SEM, TEM, XRD and BET techniques. The effect of factors like pH, initial concentration of amoxicillin and adsorbent, contact time, and temperature were investigated to determine thermodynamic parameters, equilibrium isotherms, and kinetics of adsorption process. Results: Physical characteristics of the magnetized activated carbon showed that Fe3O4 nanoparticles had the average size of 30-80 nm and BET surface area was 571 m2/g. The optimum conditions of adsorption were: pH=5, contact time=90min, adsorbent dose of 1g/L and temperature 200C. The equilibrium isotherms data showed that the adsorption process fitted both Freundlich and Longmuir models with the maximum capacity of 136.98 mg/g. The kinetic of the adsorption process followed pseudo second-order model. The negative values of &DeltaH0 and &DeltaG0 obtained from studying the adsorption thermodynamic suggested that amoxicillin adsorption on magnetic activated carbon was exothermic and spontaneous. Conclusion: The present study showed that the magnetic activated carbon has high potential for adsorption of amoxicillin, in addition to features like simple and rapid separation. Therefore, it can be used for adsorption and separation of such pollutants from aqueous solutions.


Nahid Rashtchi, Soheil Sobhanardakani, Mehrdad Cheraghi, Amirreza Goodarzi, Bahareh Lorestani,
Volume 15, Issue 2 (8-2022)
Abstract

Background and Objective: Amoxicillin (AMX) is one of the commonly used commercial antibiotics due to its high resistance to bacteria and its large spectrum against a wide variety of microorganisms, which it´s existence in the wastewater from pharmaceutical industries and hospital effluents causes unpleasant odor, skin disorder, and microbial resistance among pathogen organisms, and it can lead to the death of microorganisms which are effective in wastewater treatment. Therefore, this study was conducted to investigate of removal efficacy of AMX from aqueous solutions using GO@Fe3O4@CeO2.
Materials and Methods: In this descriptive study, GO@Fe3O4@CeO2 was synthesized and then used as a photocatalyst for the removal of AMX from aqueous solution. GO@Fe3O4@CeO2 was characterized using X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), SEM-EDX elemental analysis, Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) methods. Additionally, the influence of variables including pH (3-11), amount of photocatalyst (0.006-0.04 g), contact time (0-150 min), and temperature (25-55 °C) was assessed on the efficacy of AMX removal. 
Results: The results indicated that removal efficiency increased up to 90 min contact time, 0.02 g of photocatalyst, and at the temperature of 25 °C. The optimum pH for AMX removal was 10.
Conclusion: GO@Fe3O4@CeO2 could be an effective and available photocatalyst for the removal of AMX from industrial wastewater under UV light.

Anasheh Mardiroosi, Hanieh Fakhri, Ali Esrafili, Masoumeh Hasham Firooz, Mahdi Farzadkia,
Volume 15, Issue 4 (3-2023)
Abstract

Background and Objective: Pharmaceutical compounds can cause potential risks to aquatic and terrestrial organisms. So far, different methods have been used to eliminate these pollutants, photocatalytic processes are one of the most efficient processes to eliminate pharmaceutical compounds. In this study, the efficiency of a novel MOF-based nanocomposite, PMo/UiO-66 as a photocatalyst for amoxicillin degradation under visible light irradiation was evaluated.
Materials and Methods: The study of the chemical decomposition of amoxicillin using the PMo/UiO-66 system was conducted at different stages. First, the PMo/UiO-66 MOF nanocomposite was synthesized using the solvothermal method, then the properties of the synthesized nanocomposite were investigated using XRD, FTIR, and SEM techniques. The effect of different operational parameters such as pH (3, 6, and 9), catalyst concentration (15, 20, 25, and 30 %w/w), initial concentrations of amoxicillin (20, 30, 40, and 50 mg/L) at different times on the removal efficiency was investigated. The reusability of the catalyst for four cycles was assessed.
Results: The results showed that PMo/UiO-66 nanocomposite at pH 6, 25 %w/w nanocomposite concentration, and the amoxicillin concentration of 20 mg/L led to complete decomposition of amoxicillin after 120 min. The kinetic of amoxicillin removal followed the first-order model. Reusability tests showed that the photocatalytic efficiency of the synthesized catalyst was not substantially reduced after four cycles.
Conclusion: The current study confirmed that the PMo/UiO-66 system has an appropriate efficiency for photocatalytic removal of amoxicillin under optimized test conditions.

Yadollah Yousefzadeh, Vida Izadkhah, Soheil Sobhanardakani, Bahareh Lorestani, Sedigheh Alavinia,
Volume 16, Issue 4 (3-2024)
Abstract

Background and Objective: Antibiotics as emerging pollutants are harmful to environmental health. Therefore, this study was conducted to investigate the efficiency of Uio-66-NH2@CS-Iso-Gu nanohybrid for the removal of amoxicillin (AMX) from aqueous solutions.
Materials and Methods: In this study, for the first time, guanidine and isocyanate monomers are cross-linked with chitosan. The combination of this polymer with organometallic compounds contributes to its chemical/thermal stability and reusability. Uio-66-NH2@CS-Iso-Gu nanohybrid was characterized using X-ray diffraction (XRD), Scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), and BET methods. Also, the effects of pH, initial concentration of AMX, contact time, and temperature were evaluated. Moreover, isotherm, kinetic and thermodynamics studies were performed.
Results: The results of TGA analysis showed that Uio-66-NH2@CS-Iso-Gu nanohybrid was resistant to temperatures up to 400 °C. Also, optimal adsorption of AMX occurred in the first 25 min. The synthesized nanohybrid has a surface area of 101.2 m2/g and a type IV isotherm. Acidic groups were present on the synthesized nanohybrid surface based on the pHpzc = 4.7. Langmuir (for 25 °C and 45 °C) and Freundlich (for 65 °C) isotherm models and pseudo-second-order kinetic models are more appropriate to fit the adsorption data with the experimental data. The maximum adsorption capacity of the synthesized nanohybrid was equal to 56.49, 40.65, and 0.382 mg/g at temperatures of 25°C, 45°C, and 65°C, respectively. Based on the findings, Uio-66-NH2@CS-Iso-Gu nanohybrid could be used for up to five cycles without significantly reducing their performance.
Conclusion: The results showed that Uio-66-NH2@CS-Iso-Gu nanohybrid has a significant efficiency for removing AMX and could be used as an effective adsorbent for the treatment of wastewater containing pharmaceutical residues.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb