Anasheh Mardiroosi, Hanieh Fakhri, Ali Esrafili, Masoumeh Hasham Firooz, Mahdi Farzadkia,
Volume 15, Issue 4 (3-2023)
Background and Objective: Pharmaceutical compounds can cause potential risks to aquatic and terrestrial organisms. So far, different methods have been used to eliminate these pollutants, photocatalytic processes are one of the most efficient processes to eliminate pharmaceutical compounds. In this study, the efficiency of a novel MOF-based nanocomposite, PMo/UiO-66 as a photocatalyst for amoxicillin degradation under visible light irradiation was evaluated.
Materials and Methods: The study of the chemical decomposition of amoxicillin using the PMo/UiO-66 system was conducted at different stages. First, the PMo/UiO-66 MOF nanocomposite was synthesized using the solvothermal method, then the properties of the synthesized nanocomposite were investigated using XRD, FTIR, and SEM techniques. The effect of different operational parameters such as pH (3, 6, and 9), catalyst concentration (15, 20, 25, and 30 %w/w), initial concentrations of amoxicillin (20, 30, 40, and 50 mg/L) at different times on the removal efficiency was investigated. The reusability of the catalyst for four cycles was assessed.
Results: The results showed that PMo/UiO-66 nanocomposite at pH 6, 25 %w/w nanocomposite concentration, and the amoxicillin concentration of 20 mg/L led to complete decomposition of amoxicillin after 120 min. The kinetic of amoxicillin removal followed the first-order model. Reusability tests showed that the photocatalytic efficiency of the synthesized catalyst was not substantially reduced after four cycles.
Conclusion: The current study confirmed that the PMo/UiO-66 system has an appropriate efficiency for photocatalytic removal of amoxicillin under optimized test conditions.