Search published articles


Showing 12 results for Arsenic

F Kord Mostafapour, E Bazrafshan, H Kamani,
Volume 3, Issue 3 (10-2010)
Abstract

Backgrounds and Objectives:Arsenic is one of the most toxic and dangerous elements in drinking  water that with increase in its application in agriculture, development of applications in agriculture, livestock, medicine, industry and other cases its entry to water resources and environment is much easier.Arsenic is a poisonous, cumulative substance and inhibitor of SH group enzymes and various studies revealed a significant correlation between high concentrations of arsenic in drinking water and liver cancer, nasal cavity cancer, lungs, skin, bladder and kidney cancer in men and women and prostate and liver in men. The aim of this was survey of arsenic removed from water using dissolved air floatation mechanism.
Materials and Methods: At present study in first step for determination best conditions of arsenic removal by dissolved air floatation method, optimum amount of coagulants determined and then synthetic solution of arsenic (50, 100 and 200 µg/L) prepared using sodium arsenate. In third step arsenic removal efficiency under various variables such as arsenic concentration, flocculation and floatation time and saturation pressure were analyzed. Finally residual arsenic concentration was determined by the silver diethyl dithiocarbamate method.
Results:Effect of optimum condition on arsenic removal efficiency at various initial concentration 50, 100 and 200 µg/Lshowed that the best coagulant for removal of arsenic is polyaluminumchloride. Also maximum efficiency (99.4%) was obtained in initial concentration equal 200 µg/L.
Conclusion: It can be concluded that dissolved air floatation method with poly aluminum chloride as coagulant have high efficiency for arsenic removal even at high concentrations and therefore this method can be used for removal of arsenic from water as a suitable and safe option.


A Maleki, A Eslami,
Volume 3, Issue 4 (1-2011)
Abstract

Backgrounds and Objectives:Water contamination with arsenic has been recognized as a serious problem and its epidemiological problems to human health have been reported. The objective of this study was to explore the possibility modified wheat straw using sodium bicarbonate for removing arsenic from aqueous solution.
Materials and Methods: Adsorption process was accomplished in a laboratory-scale batch with emphasis on the effect of various parameters such as pH, contact time, arsenic concentration and adsorbent dosage on adsorption efficiency. In order to understand the adsorption process, sorption kinetics and equilibrium isotherms were also determined.
Results: It was found that adsorption of the arsenic was influenced by several parameters such as arsenic initial concentration, adsorbent dosage and solution pH. Maximum absorption efficiency was achieved at pH 7. As expected the amount of arsenic adsorbed on wheat straw incresed as its concentration went up. Among the models tested, namely the Langmuir, Freundlich, and Dubinin Radushkevich isotherms, the adsorption equilibrium for arsenic was best described by the Langmuir and Freundlich models. It was also found that adsorption of arsenic by wheat straw followed pseudo second-order kinetics. Mean free energy of adsorption (15.8 kJ mol-1) indicates that adsorption of arsenic by wheat straw might follow a chemisorption mechanism. Desorption studies show that arsenic ions are strongly bounded with the adsorbent and exhibit low desorption.
Conclusion: It is concluded that that adsorption by modified wheat straw is an efficient and reliable method for arsenic removal from liquid solutions.

 


Ehsan Olyaie, Hossein Banejad, Ali Reza Rahmani, Abbas Afkhami, Javad Khodaveisi,
Volume 5, Issue 3 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Arsenic is one of the most toxically contaminants in groundwater and soils. Due to the ability of bio-accumulation of arsenic III in plants through irrigation with contaminated water and its entrance to the food chain, irreparable hazards would be caused. The aim of this research is the feasibility study of arsenic III removal from polluted water using calcium peroxide nanoparticles synthesized and also studying the effective parameters. Moreover, the adding effect of nanoparticles on the important parameters of irrigation would be assessed.
Materials and Methods: In this research, we first synthesized CaO2 nanoparticles through chemical precipitation and then studied the arsenic removal efficiency from contaminated water samples. Nevertheless, the impact of the effective parameters including pH, initial arsenic III concentration, and CaO2 nanoparticles concentration were investigated. Finally, relevant results to nanoparticles effect on the important irrigation water quality parameters were presented.
Results: Our results showed that synthesized particles were in the range of 25-50 nanometers. In addition, the efficiency of the CaO2 nanoparticles in arsenic III removal was 88 percent under following conditions:  irrigation pH range 6.5-8.5, nanoparticles dosage 40 mg/L, arsenic initial concentration 400 µg/L, and 30 minuts retention time. Moreover, the nanoparticles synthesized did not have any undesirable impact on significant parameters in irrigation water.
Conclusion: Generally, it can be concluded that CaO2 nanoparticles based on the in situ chemical oxidation had significant effect on the reduction of arsenic III until lower than recommended standards for irrigation water. High rate of process and relatively short reaction time, and having no negative effects on the significant parameters of irrigation indicate that CaO2 nanoparticles have significant potential in removal of arsenic III from contaminated water.


Mohamad Taghi Samadi, Roghaye Nourozi, Mohamad Hadi Mehdinejad, Reza Aminzadeh,
Volume 5, Issue 4 (2-2013)
Abstract

Backgrounds and Objectives: Determination of arsenic(As) in drinking water has received increasing interest due to its detrimental effects on health. The aim of this research is to investigate effect of coating coral limestone using aluminum sulfate as an adsorbent on the arsenic(V) removal efficiency from aqueous solution. Materials and Methods: In this laboratory scale study, we prepared coral lime granules using mesh 30 during several stages. Then, we investigated the arsenate removal efficiency under different conditions and changing main factors including pH, contact time and amount of no coated and aluminum sulfate-coated adsorbent. Moreover, we fitted our results with Langmuir and Freundlich models and kinetic data with pseudo- first order, pseudo- second order and modified pseudo- first order models. Results: We found that increasing pH from 3 to 10 at arsenate concentration of 500 ppb and 5 g/l adsorbent and 120 min contact time, removal efficiency for no coated and coated adsorbent was reduced from 100 to 86.2% and from 100 to 92.2% respectively. Increasing concentration of both adsorbents from 1 to 5 g/l at contact time 120 min increased the removal efficiency from 76 to 99.2% and from 66.3 to 91.1% respectively. Arsenate removal efficiency was directly proportional with the amount of adsorbent and contact time and reversely proportional with the initial concentration of arsenate and pH. The removal efficiency of the coated adsorbent was more than uncoated adsorbent. Langmuir was the best sorption isotherm model for arsenate in these two processes and absorption kinetic was well described with second order models. Conclusion: Excellent removal efficiency, cost-effectiveness process, and lack of environmentally harmful substances make application of the Persian Gulf offshore corals a reasonable adsorbent to remove environmental contaminants such as arsenate.
Hossein Banejad, Atieh Zarei, Ali Akbar Safari Sinegani, Farshad Dashti,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Reuse of treated wastewater in agriculture is becoming more attractive due to the growing demand for water, particularly in arid and semi-arid regions like Iran.In some areas, industrial wastewaters distribute arsenic in the water and vegetables, among the other plants, are mainly irrigated by municipal and industrial wastewater. This study aimed to evaluate the outcome of radish irrigation using water contaminated with arsenic and zinc and to measure the zinc concentration in the edible parts of radish plant. Materials and Methods: The experiments were designed in the form of a factorial completely randomized design with three replications in which radishes were planted in pots about five kilograms. Arsenic concentration at four levels (0, 100,300 and 600 µg/l) and zinc concentration at three levels (0, 10, and 50 mg/l) were added to the irrigation water. The pots were equally irrigated once every 3 to 4 days. After harvesting and laboratory operations, zinc concentration was measured using atomic absorption spectroscopy. Results: The study indicated that zinc concentration in radish tubers is correlated with the concentration of zinc in water. The results of the analysis of variance table for the effect of zinc and arsenic-contaminated irrigation water on zinc concentration in radish roots, tubers and leafs show only one treatment (zinc concentration in water) on the property is significant at 5 and 1%. The results of the comparison table revealed that Zn uptake was decreased with increasing arsenic up to 300 µg/l. Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.


E Solgi, A Esmaili-Sari, A.r Riyahi Bakhtiari, M Hadipour,
Volume 8, Issue 1 (8-2015)
Abstract

Background and Objectives: Arsenic contamination is of great environmental concern due to its toxic effects as a carcinogen. In order to assess soil arsenic contamination and its distribution patterns, surface soil samples collected from the urban areas of Arak were analyzed. Materials and Methods: Totally, 62 surface soil samples were collected from depth of 0–20 cm of different locations including parks, green spaces, agricultural, roadsides, and squares of Arak City. The spatial distribution of arsenic in soil was mapped using GIS and kriging method. Results: The concentration of arsenic in the surface soil of Arak City was between 2.2- 10.8 mg/kg (average: 5.78 mg/kg). Spatial analysis showed that arsenic contamination enhances in the city center and there was an increasing trend from south to north. In addition, the mean arsenic concentration in the urban topsoil samples from Arak was lower compared with mean concentration for other cities around the world. Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.


H Zarei, A.h Mahvi, S Nasseri, R Nabizadeh Noudehi, F Shemirani,
Volume 8, Issue 3 (12-2015)
Abstract

Objective and Background: Fluoride is an element widely found in the earth crust. Advantages and disadvantages of fluoride in the human body are depended on its concentration. Long-term consumption of drinking water contaminated with arsenic can cause adverse health effects such as skin lesions and cancer in humans. The aim of this study was to study efficiency of nano alumina on multi walled carbon nano tube  for removal As(V) and fluoride from aqueous solution.

Materials and Method: In this study, nano-scale crystalline alumina was synthesized on single walled carbon nanotube by sol-gel method for using as a sorbent for solid phase extraction of Fluorine ion and arsenic(V). Response surface methodology based on Box-Behnken was used to assess the effect of independent variables on the response function and prediction of the best response value. In this study, effect of different parameters, such as contact time (10 to 120 min), pH (3-9), adsorbent dosage (0.25-1.5 g/L) and initial concentration of fluoride (2-8 mg/L) on efficiency of process was investigated. The structure of nano-scale alumina on multi walled carbon nano tube was determined by XRD and SEM techniques. Moreover, Freundlich and Langmuir isotherm models were used to calculate equilibrium constant.

Results: It was found that by increasing contact time and adsorbent dosage the rate of fluoride removal increased. However, by increasing pH and initial concentration the efficiency of fluoride removal decreased. High value for R2 (0.94) shows that removal of arsenic(V) can be described by this model. The Freundlich isotherm was the best fitted graph for experimental data with R2 more than 0.997.

Conclusion: In this study, it was observed that efficiency of arsenic(V) and fluoride  removal was greatly increased by using nano-scale alumina on multi walled carbon nanotubes (MWCNTs).


M Kolahkaj, S Battaleblooie, H Amanipoor, S Modabberi,
Volume 9, Issue 4 (3-2017)
Abstract

Background and Objective: Arsenic accumulation in rice has become a major disaster in the recent decade. A number of studies indicated that rice is a major source of arsenic pollution in human diets. This study assessed the arsenic (As) accumulation in rice grain in Meydavood where rice is the main agricultural crop of the region. This research studied the probable presence of arsenic in the rice grains of Maydavood region in Khozestan province and evaluated the arsenic intake through daily rice consumption.

Materials and Methods: Ten rice samples were taken from Meydavood farms during cropping time. Samples were analyzed for arsenic using ICP-MS.

Results: Data were analyzed using SPSS statistical software and then compared with the World Health Organization standards. The mean concentrations of arsenic in rice samples were 0.079 ppm based on dry weight. The results showed that in 30% of the samples, arsenic concentration exceeded the WHO standards. Due to the high concentration of arsenic in rice samples, the arsenic intake by human was calculated using a regimen of safety and considering a consumption rate of 110 g of rice per day and an average body weight of 70 kg.

Conclusion: The total daily intake of As (TDI-iAs) for adults (70 kg body weight and 110 g rice consumption) was in the range of WHO recommended provisional tolerable daily intake value. Since the source of arsenic in Meydavoud is a natural source, thus, comprehensive studies are recommended on its water resources. Additionally, a solution should be found to prevent probable health effects on the residents.


Azadeh Modiri, Shadab Shahsavari, Ali Vaziri Yazdi, Ali Akbar Seifkordi,
Volume 13, Issue 1 (4-2020)
Abstract

Background and Objective:  Arsenic has long been considered as a heavy metal and toxic pollutant due to its potential to harm the human health and the environment. Adsorption is one of the mechanisms for arsenic removal from wastewater. Therefore, the purpose of this research was to investigate the feasibility of synthesized chitosan-zirconium magnetic nano fiber on arsenic adsorption from wastewater and to evaluate its kinetic and isotherm models.
Materials and Methods: Synthesis of nanofibers was performed by electrospinning method and the optimal formulation was determined following the experimental design. Then, kinetics and isotherms of arsenic adsorption on the as synthesized nanofibers were investigated. The prepared nanofiber was characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopes (FESEM), Infrared Fourier Transform (FT-IR) and Vibrational Sampler Magnetic Meter (VSM).
Results: The optimal formulation was obtained: 2.84% chitosan, 0.97% nano-zirconium and 0.94% nano-iron. The adsorption of arsenic on synthetic fibers was found to follow quasi-first-order kinetics and the Freundlich isotherm. Furthermore, the effect of initial concentrations of arsenic, contact time, temperature and pH on arsenic adsorption were surveyed. The optimal condition for nitrate arsenic adsorption was obtained at initial concentration of 70 mg/L, 45 min contact time and at pH 3.
Conclusion: According to the results, the synthesized nanofiber displayed a regular network structure with the distribution of the Zr-nanoparticles in its shape. Also, according to the form of magnetometric analysis, it was found that chitosan-nanosirconium magnetic nanofibers are well magnetized and are free magnetic.  Finally, it can be concluded that the synthesized nanosorbent has a high potential for arsenic removal from industrial effluents.

Ehsan Aghayani, Sakine Shekoohiyan, Ali Behnami, Ali Abdolahnejad, Mojtaba Pourakbar, Hamed Haghnazar, Vahideh Mahdavi, Amir Mohammadi,
Volume 16, Issue 1 (6-2023)
Abstract

Background and Objective: Heavy metals in water can pose risks to human health. Therefore, it is necessary to monitor and measure metals to ensure the health of consumers.
Materials and Methods: This study aimed to measure heavy metals such as arsenic, lead, cadmium, chromium, zinc, and mercury in water resources and urban water distribution networks in spring and summer of 2021 in Maragheh city. Accordingly, 25 samples were taken to investigate the presence of heavy metals. The presence of these metals in water sources was investigated using qualitative maps and finally, by evaluating the health risk caused by the presence of these metals, their effect on the health of consumers has been studied.
Results: Examining the concentration of metals in water resources upstream of the dam shows a relatively high concentration of metals, especially arsenic (13.2 µg/L). Despite this, the amount of arsenic after the water treatment plant and in the distribution network is reduced to an insignificant level. On the other hand, the results show that the amount of zinc metal in the network is higher than in the reservoir of the dam, and its concentration in the dam is equal to zero and in the network, it reaches the highest value of 578 µg/L. Finally, the health risk assessment shows that the calculated THI values for all samples vary between 0.01 and 0.99.
Conclusion: Based on the calculated health risk, there is no threat to the health of consumers regarding heavy metals in Maragheh drinking water. Also, these results double the necessity of additional studies regarding the leakage of zinc metal from the pipes and accessories of the city's drinking water distribution network in the future.
 

Mohsen Pourkhosravani, Fatemeh Jamshidi Gohari, Nasrin Sayari,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: This research tries to analyze the spatial distribution and trend of arsenic level changes in the underground water resources of the Sirjan basin, and also to evaluate and analyze the factors affecting the concentration of this element in these water resources.
Materials and Methods: Sampling of underground water sources in the study area was done by systematic-random method and arsenic concentration was done by ICP-MS method in the laboratory. Also, to evaluate the factors affecting the concentration of arsenic in the underground water resources of Sirjan bathe sin, the method of land systems analysis was used.
Results: The results of the research show that the amount of arsenic in all samples is higher than the Guidelines provided by the World Health Organization so the amount of this element in the underground water sources of the study area varies between 30 and 390 µg/L. Samples No. 9, 13, and 16, which are located in the deepest parts of the basin, have the highest amount of arsenic. For this reason, the durability of water in this part of the basin increases. This reduces the intensity of the current. As a result, according to the cumulative effect law, this process can lead to an increase in arsenic concentration.        
Conclusion: The evaluation of changes in the concentration of arsenic in the underground water resources of the study area indicates that the concentration of this element had a high increasing trend. According to the results, the location of the studied area in the center of hydrothermal and geothermal processes (copper mineralization belt in Iran), the cumulative effect, and the effect of pH on the absorption and desorption of arsenic are among the most important factors affecting the increase of arsenic in the underground water resources of Sirjan Basin.
 

Maryam Tahmasebpoor, Leila Sanaei, Masoomeh Chaharkam,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: Zeolites are among the widely used adsorbents for the removal of arsenic-toxic pollutants. The objective of this study is to prepare granulated zeolite adsorbents using chitosan (CS/Fe-Clin) and alginate (Alg/Fe-Clin) and compare them in terms of physical appearance and arsenic adsorption efficiency.
Materials and Methods: Granular adsorbents were prepared via the ionotropic gelation method. The effects of the type and concentration of the cross-linking solution and the initial ratio of materials in granules formation, as well as the effect of initial arsenic concentration, and the amount of adsorbent used on the adsorption efficiency, were investigated. SEM, XRD, FTIR, and AAS analyses were used to confirm the results. Equilibrium data were matched with Freundlich and Langmuir isotherms.
Results: A weight percentage of 2 % iron chloride (III) and an initial ratio of 1:4 of alginate: nanocomposite for Alg/Fe-Clin and a weight percentage of 2 % (1 % sodium hydroxide + 1 % sodium tripolyphosphate) and an initial ratio of 1:3 of chitosan: nanocomposite for CS/Fe-Clin were chosen as the optimal values. Maximum adsorption efficiency of Alg/Fe-Clin and CS/Fe-Clin adsorbents was determined 88.1 and 92.9 % at dosages of 0.6 and 1 g/L and at initial concentrations of 200 and 300 µg/L, respectively. The qmax values for Alg/Fe-Clin and CS/Fe-Clin adsorbents were 11.11 and 10 mg/g, respectively. Results better fitted with Freundlich isotherm.
Conclusion: Due to the proper adsorption capacity, both synthesized adsorbents showed the ability to effectively remove arsenic; whoever, alginate binder was more efficient.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb