Search published articles


Showing 4 results for Azo Dye

A.r Yazdanbakhsh, A Sheikh Mohammadi, M Sardar, H Mohammadi, M Zarabi,
Volume 2, Issue 4 (3-2010)
Abstract

Backgrounds and Objectives: A great part of organic compounds cause more pollution in natural  waters meet, are chemical dye material. Azo dyes have more usage in different industries. Azo dyes not only give undesirable dye to the water but also have mutation potential and carcinogenesis effects in human and cause the production of toxic substances in water environments.The purpose of this study is investigation of iron powder, hydrogen peroxide and iron powder-hydrogen peroxide processes in removal of acid yellow 36 dye from aqueous solutions.
Materials and Methods: This study was conducted in laboratory scale. At this experiment synthetic solution was made from acid yellow 36 dye, and the removal of acid yellow 36 dye was studied by iron powder, hydrogen peroxide and iron powder- hydrogen peroxide processes .Also effect of dye concentration, pH solution, hydrogen peroxide concentration, iron powder concentration and the time of contact on decolorization, were evaluated.
Results: The results showed that iron powder - hydrogen peroxide process, compared to two other  process has high decolorization power. Removal efficacy of iron powder-hydrogen peroxide process with H2O2 =23.33 ml / L, pH =3, iron powder 2000 mg/L and 60 minute ,was about 97.9%
Conclusion:In general this investigation showed that , this method (Iron powder-hydrogen peroxide process) has high efficiency for removal of Azo dyes. But application this method in the industry, should be economically evaluated.


H. Asilian, G.r Moussavi, M. Mahmoudi,
Volume 3, Issue 1 (4-2010)
Abstract

Backgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution.
Materials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10), adsorbent dose (0.2-3 g), dye concentration and contact time on the adsorption efficiency were investigated. Equilibrium study data were modeled using Langmuir and Freundlich models.
Results: The characterization analysis indicated that itwas composedmainly of ferric hydroxide. The powder had a BET and average pore size of 107 m2/g and 4.5 nm, respectively. The results showed that dye removal was highest at a solution pH of 7 to 8 and a powder dose of 2 g/L. The RR198 removal percentage decreased from 100& to 43& at 140 min contact time when the concentration of dye was increased from 25 mg/L to 100 mg/L, at optimum pH and dosage. The Langmuir equation provided the best fit for the experimental data. The maximum adsorption capacity was calculated to be 34.4 mg/g.
Conclusion: According to the obtained results, the water coagulation waste sludge appears to be a suitable low cost and effcient adsorbent for removing reactive azo dyes from waste streams.


M.r Samarghandi, M Noori Sepehr, M Zarrabi, M Norouzi, F Amraie,
Volume 3, Issue 4 (1-2011)
Abstract

Backgrounds and Objectives: Treatment of colored wastewater is one of the important challenges of environmental engineers. Adsorption process is a key option for removal of organic matter from wastewater. The aim of present work was to investigate pumice stone as an adsorbent for removal of Acid Black 1 from aqueous solution.
Materials and Methods: Removal of Acid Black 1 by pumice stone was investigated. Acid Hyrdo Chloric(HCL) 1 N was used to increse adsorbent porosity. Various parameters such as pH, initial dye concentration and contact time were studied.
Results: Results showed that removal of Acid Black 1 was increased by increasing of contact time and initial dyeconcentration although it was decreased by increasing of pH. Experimental data was best fitted to Longmuir isotherm model (r2>0.98). Study of diffusion model revealed that intraparticle diffusion is rate-controlling step in removal of Acid Black 1 by pumice stone.
Conclusion : The results indicated that pumice stone was a dominant adsorbent for Acid Black 1 removal.


Mohamad Javad Zoqi,
Volume 14, Issue 3 (12-2021)
Abstract

Background and Objective: The most used dyes in textile industries are Azo Group dyes. Azo dyes have complex aromatic compounds, low chemical and biodegradable stability. Due to these properties, treatment of this type of wastewater by conventional methods will not meet environmental standards. The advanced oxidation process has been widely used to treat organic matter from wastewater. In this study, dye purification of azo dye Reactive Red 195 by UV/H2O2 process was investigated. Moreover, the parameters affecting this process have also been determined.
Materials and Methods: In this study, dye treatment was conducted in the presence of different concentrations of hydrogen peroxide, and at different retention time, temperature and pH values in a continuous photoreactor equipped with UV lamps. Using central composite design and response surface methodology (RSM), effects of various concentrations of hydrogen peroxide, retention time, temperature, and pH on the color and COD removal were studied in the range of 0–2%, 60-240 min, 25-80 oC, and 3-10, respectively.
Results: The results showed that the concentration of hydrogen peroxide and retention time were the most influential parameters on color and COD removal. Color removal significantly enhanced by increasing retention time and H2O2 concentration to 200 min and 1.2%, respectively. pH increase had positive effect on color removal. There were increases in the rate of color and COD removal as the temperature went up to 50 oC. However, temperature of 80 oC negatively impacted AOP process. According to RSM, the optimum factor levels were achieved at 1.28%, 240 min, 49 oC and 10 for concentrations of hydrogen peroxide, reaction time, temperature, and pH, respectively.
Conclusion: According to the result, UV/H2O2 proved to be capable of degrading Reactive Red 195. Almost all the azo dye color destroyed after 209 min while 87.52 % of the COD was removed after 240 min of irradiation.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb