Search published articles


Showing 4 results for Bioaccumulation

Sh Zare, Sh Kaboodvandpour,
Volume 7, Issue 3 (5-2014)
Abstract

Background and Objectives: Due to the importance of Sanandaj Gheshlagh Reservoir (SGR) in the region and proven mercury pollution in SGR water, a research project was carried out to determine the amount of mercury concentration and bioaccumulation and its behavior through a food route in SGR food chain (i.e., water, sediments, fish, and human).This was done, because it has been reported that mercury concentration and its toxicity could increase during mercury exchange between trophic levels. Materials and methods: During April to December 2012, 24 water, sediment, and fish samples (Capoetta trutta) (4 samples per month) from SGR and 24 human hair samples from Sarab Ghamish village settlers (the major Capoetta trutta consumers in the region) were collected. Results: Total mercury mean concentration in water, sediment, Capoeta trutta, and human hair were 0.0028±0.000128, 0.110±0.0057, 0.296±0.0119, 2.059±0.1704 ppm respectively. Calculated bioconcentration factors were 4 × 10 and 1 × 102 in SGR sediment and fish, and related biomagnifications factors were 40 and 5 respectively. Conclusion: Due to the high bioaccumulation, biomagnifications factors and mercury concentration recorded in edible parts of SGR fish, local consumers should not eat more than 1182 gram of this fish weekly without accounting for other potential sources of total mercury in their food basket.


Mohammad Sohrabi, Nasrin Hassanzadeh, Fariba Hedayatzadeh, Mehdi Mofid,
Volume 13, Issue 4 (2-2021)
Abstract

Background and Objective: Air quality and distribution of trace elements in the Tehran metropolis were evaluated using transplants of the epiphytic lichen Ramalina sinensis.
Materials and Methods: Thalli of R. sinensis were collected from a non-contaminated area and transplanted in the six urban sites of Tehran for six months. After the end of the exposure period, the content of twelve elements in lichen was determined by ICP-MS method and the obtained data were evalusted using statistical analysis and various indicators.
Results: Based on the results, the order of mean concentration of the trace elements in the R. sinensis lichen samples was determined as: Ca > K > Fe > Mg > Na > Mn > Zn > Pb > Cr > Cu > Ni > Co and the highest amount of bioaccumulation was found for the essential elements. For sevelar elements, significant differences were observed in various sampling sites. Based on the pollution load indexes (PLIs), two sites at Sharif university and Setad Bohran were more polluted than other areas. Exposed-to-control (EC) ratio values for Pb, Zn, Cr, Fe, Mn, Ni, Mg, and Co were also found in the range of 1.25-1.75. Based on the relative accumulation factor (RAF), the accumulation preference of elements by R. sinensis lichen was observed as Na > Cr > Cu > Fe > Mg > Ni > Zn > Mn > Co > Pb > Ca > K, respectively, which represents the significant ability of this species in the accumulation of elements such as Na, Cr, Cu and Fe. PCA and EF analysis indicated that trace elements adsorbed by lichen were mainly sourced from vehicle transportation.
Conclusion: This study demonstrates the application and importance of R. sinensis lichen in biomonitoring of air pollutants elements in urban areas. This approach can justify the suitability, accuracy and cost-effectiveness of lichen compared to other biomonitors for air pollutants and more importantly highlights its capability to the determination of wide levels of air pollution in large scales.

Aram Arpanaei, Sina Attarroshan, Sima Sabzalipour, Iman Arpanaei,
Volume 13, Issue 4 (2-2021)
Abstract

Background and Objective: Pollutants emitted from industries can endanger human health if they enter the food chain, so environmental monitoring is essential. The aim of this study was to investigate the bioaccumulation of heavy metals including lead, copper and nickel and the level of air pollution tolerance index in Prosopis juliflora and Conocarpus erectus tree species during one-year period (1399-1400) in Mahshahr city.
Materials and Methods: In order to investigate the bioaccumulation of heavy metals by two species of Prosopis juliflora and Conocarpus erectus, 15 stations were selected separately. After recording the coordinates of each tree (station), 4 leaveas were taken from each tree that accounted for total 60 samples. The samples were then transferred to the laboratory and digested then analyzed using atomic absorption spectrometer. For statistical analysis, K.S test was used to normalize data and independent t-tests were applied to determine the level of significance. The correlation between variables were tested by Pearson correlation. Spatial distribution of heavy metals was performed using Ver.10.4 Arc GIS software.
Results: Conocarpus erectus established the highest adsorption value for metals such as lead (0.1223±0.35 mg/kg), copper (0.2101±0.053 mg/kg) and nickel (0.2023±0.094 mg/kg). No significant correlation was observed between heavy metals. Evaluation of air pollution tolerance showed that Conocarpus erectus (6.53±0.026 mg/kg) was more tolerant than Prosopis juliflora (4.77±0.029 mg/kg). Spatial distribution revealed that heavy metals accumulation in the leaves of trees were more obvious in the southest area of the city.
Conclusion: Conocarpus erectus is more tolerant of air pollution than Prosopis juliflora. Therefore, it can be used in areas with the high levels of pollution. Moreover, the spatial distribution of heavy metals’ bioaccumulation illustrated that the south and southeast parts of the city (due to industry concentration) are more affected by the heavy metals pollution which call for more palnting trees.

Samaneh Torbati, Shokouh Esmailbegi Kermani,
Volume 15, Issue 3 (12-2022)
Abstract

Background and Objective: Phytoremediation is one of the eco-friendly treatment methods that can play important role in removing heavy metals. In the present research that was done in 2021, the potential of 20 plant species for treatment of silver, lead, and zinc elements from the soil of Zarshouran mine area was evaluated.  
Materials and Methods: Sampling of the soil and plants were done following the selection of 20 sampling points. After preparing the samples, the amount of the studied elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Metal pollution levels in the soil were assessed using the enrichment factor (EF). Moreover, the enrichment coefficient of root (ECR) and shoot (ECS), translocation factor (TF) and metal accumulation index (MAI) were calculated.
Results: A high contamination of Ag, Pb and Zn elements were determined in the soil of the studied area. Two plant species Astragalus rostratus and Prangos ferulacea had ECS and TF higher than one for Ag. Also, only Eryngium billaridieri and Scrozonera latifolia had ECS/ECR >1 and TF <1 for the three elements. The highest amount of MAI in root and shoot belonged to E. billardieri with values ​​of 29.7 and 16.2, respectively.
Conclusion: A. rostratus and P. ferulacea had the potential for phytoextraction of Ag from the soil. Also, only two species E. billaridieri and S. latifolia were able to phytostabilization all three elements. Based on MAI values, E. billardieri had the greatest ability to bioaccumulate Ag, Pb and Zn elements.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb