Search published articles


Showing 2 results for Bioaugmentation

F Kafilzadeh, Z Khaledi,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Bioaugmentation is a superior technique in bioremediation of contaminated soils with petroleum hydrocarbons. The aim of this study was to evaluate the effect of isolated bacteria from activated sludge of Asalouyeh special zone municipal wastewater treatment for bioaugmentation of kerosene-contaminated soils and to study the growth of isolated bacteria in the presence of different concentrations of this product.

Materials and Methods: Sampling of activated sludge was carried out from two treatment plants in Asalouyeh zone. Isolation of degrading bacteria was performed by culturing the samples on basal mineral medium. Emulsification test and evaluating the kinetic growth of bacteria were carried out in different concentrations of kerosene. Isolated bacteria were inoculated to polluted soils with kerosene oil compound for bioaugmentation and measuring their bioremediation potentials and the rate of biodegradation were measured by InfraRed (IR) spectroscopy.

Results: In this study, three bacterias: Pseudomonas putida, Serratia marcescens, and Proteus mirabilis were isolated and identified as kerosene degrading bacterias from activated sludge. P. putida was recognized as the most powerful degrading bacterium of this oil product according to the emulsification tests, measuring the growth of bacteria in various concentrations of kerosene, the results of bioaugmentation of contaminated column of soil with kerosene, and reducing the level of Total Petroleum Hydrocarbons (TPHs). This bacterium with emulsification rate of 3.8 could reduce 71.03% of TPHs within 30 days.   

Conclusion: According to the adaption of Pseudomonas putida, Serratia marcescens, and Proteus mirabilis in activated sludge with variety of pollutants in sewage, they can be used as non-indigenous bacteria for bioaugmentation and cleaning up the soil contaminated petroleum hydrocarbons.


Behnaz Abdollahinejad, Hasan Pasalari, Mahdi Farzadkia,
Volume 16, Issue 1 (6-2023)
Abstract

Background and Objective: The purpose of this study is to identify and comprehensively evaluate international studies related to bioaugmentation and biostimulation methods for the remediation of soils contaminated with petroleum compounds.
Materials and Methods: This systematic review study was conducted in April 2022. The present systematic review study was conducted to address two main questions: 1) Is biostimulation an effective process in the bioremediation of soils contaminated with petroleum hydrocarbons; and 2) Is bioaugmentation an effective process for bioremediation of soils contaminated with petroleum hydrocarbons? Global electronic databases (PubMed, Web of Science, and Scopus) were used to identify relevant studies. After a comprehensive review of studies, 123 studies consistent with the purpose were selected.
Results: The results showed that biostimulation methods can have profound changes in bacterial, Archaebacteria, and soil fungal communities in terms of activity, frequency, and composition. In general, the nutrients and electron receptors added in the biostimulation process improve soil microbial activity, increasing the overall abundance of bacteria, and fungi and promoting selective replication of bacterial, archival, and fungal polyaromatic hydrocarbons (PHC) destroyers. The use of bioaugmentation technology in an environment contaminated with petroleum hydrocarbons has a positive effect on the refining process. However, it is necessary to precisely select the appropriate microbial strains. The most important factor in the removal of hydrocarbons in the soil is the selection of oil-decomposing microorganisms that can survive in high concentrations of pollutants.
Conclusion: Therefore, the result indicated that biostimulation and bioaugmentation can efficiently improve the THP removal efficiency in contaminated soil by considering the environmental conditions.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb