Search published articles


Showing 2 results for Catechol

M Kermani, M Farzadkia, A Esrafili, Y Dadban Shahamat, S Fallah Jokandan,
Volume 10, Issue 2 (9-2017)
Abstract

Background and Objective: Discharge of industrial wastewater containing Catechol has adverse effects on human and environmental health. Purpose of this study was to determine the effects of catechol toxicity before and after advanced oxidation process (ozonation process) by bioassay test with Daphnia Magna.
Materials and Methods:  This study is an applied research in which the toxicity of catechol was determined by Daphnia Magna bioassay test during the ozonation process. First, Catechol stock solution was prepared at a concentration of 250 mg/L. Then, 10 samples were prepared that each contained 0 (control), 0.5, 1, 3, 6, 12, 25, 50, 75 and 100% of volume of primary solution. Initial samples were prepared from reactor effluent in the same volume as those of the samples. According to standard method, 10 Daphnia infants were added to each sample. The samples were observed after 24, 48, 72 and 96 hours. Finally, lethal concentration (LC50) and toxicity unit (TU) were calculated using Probit analysis.
Results: According to the results, Daphnia magna was affected by the toxicity of catechol. LC50 (24-hour) for raw effluent was increased from 13.30 mL/100 mL to 30.4 mL/100 mL after 60 minutes Treatment. The toxicity unit was decreased from 7.51 TU to 3.29 TU accordingly, showing reduction of 56% in toxicity. The toxicity of the treated effluent decreased during ozonation process of catechol.
Conclusion: Based on the bioassay test, ozonation process was able to reduce the toxicity of catechol. Therefore, this process can be used as an option to treat wastewater that contains catechol.
 
S Fallah Jokandan, M Yegane Badi, A Esrafili, A Azari, E Ahmadi, H Tarhandeh, M Kermani,
Volume 12, Issue 2 (9-2019)
Abstract

Background and Objective: The activities of various industries produce a wide range of pollutants and toxic compounds. One of these compounds is the catechol, a cyclic organic compound with high toxicity and resistant to degradation. Therefore, the purpose of this study was to investigate efficiency of powder activated carbon magnetized with Fe3O4 nanoparticles in the removal of catechol from aqueous solutions by response surface methodology.
Materials and Methods: The co-precipitation method was used to synthesize magnetic powder activated carbon and its properties were analyzed by SEM and XRD analysis. Then, the effect of the parameters such as pH, contact time, absorbent dose, initial concentration of catechol and temperature on the efficiency of adsorption process were investigated using a response surface methodology (Box–Behnken). The residual concentration of catechol was measured by HPLC at 275 nm.
Results: The results showed that the maximum efficiency of the adsorption process was obtained at concentration of 20 mg/L, pH=3, contact time 90 minutes, at 25 °C and absorbent dose of 1.5 g/L. The study of isotherm and kinetics showed that the experimental data of the catechol adsorption process correlated with the Langmuir and pseudo-second order models, respectively. Thermodynamic study of the reaction also expresses the Exothermic and Spontaneous process.
Conclusion: The results showed that the adsorption process using powder activated carbon magnetized with Fe3O4 nanoparticles at acidic pH had better efficiency. As a result, the studied process as an effective, rapid and inexpensive method for removal of catechol from aqueous solutions is proposed. Due to its short reaction time, it is economically affordable process.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb