Search published articles


Showing 9 results for Chromium

A Rahmani, R Norozi, M.t Samadi, A Afkhami,
Volume 1, Issue 2 (3-2009)
Abstract

Background and Objectives:Groundwater treatment by nano particles has received increasing interest in recent years. Chromium is a commonly identified contaminant in soils and groundwater. Zero-valent iron, as a natural reduction agent can be used in controlling of contaminated sites. The aim of this research is investigation of hexavalent chromium removal from aqueous solutions by using of iron nano particles the effective parameters. Materials and Methods: In this research the synthesized of the iron nano particles has performed by addition of NaBH4 to FeCl3·6H2O solution and Cr(VI) reduction efficiency in Batch system was studied. Also the impact of the important field parameters including pH, initial chromium concentration, nano zero valent iron concentration and retention time were investigated.
Results:The results of this research showed that synthesized particles were in nano scale. In pH=3, chromium inlet concentration of 10 mg L-1, nano zero valent iron concentration 0.5 g L-1 and 2 minute retention time, 100% of Cr(VI) was removed.
Conclusion:The concentration of nano zero valent iron had significant effect on the reduction of Cr(VI).The reaction occurred in a wide range of pH value and the reaction efficiency increased significantly with decreasing initial pH. The significant removal efficiency, high rate of process and short reaction time were showed that iron nano particles have significant potential in removal ofCr(VI) from contaminated water.


B. Mortazavi, L. Rasuli, H. Kazemian,
Volume 3, Issue 1 (4-2010)
Abstract

Backgrounds and Objectives: Hexavalent Chromium is an important contaminant in surface and ground waters and removal from contaminated water and waste water has received interest in recent years. Modified Zeolite with cationic surfactant can remove Cr(VI) from contaminant water. The aim of this research is investigation of Cr (VI) removal from aqueous solutions and its effective parameters by using Modified Zeolite with cationic surfactant.
Materials and Methods:In this research the efficiency Of Cr(VI) removal and impact of the important parameters including adsorbent dose, pH and contact time in the batch system was studied.
Results:The results of this research showed that SMZ can remove more than 90 & Cr(VI) in the concentration 0.1-1.25 mg/l with optimum dose 0.3 gr and pH=6 120 minute in contact time.
Conclusion: Modified natural zeolite have significant potential inCr(VI) removal fromcontaminated water.Maximumpercent removal ofCr(VI)was in the pH=6 and 120minute contact time.Adsorption data in the equilibrium was fitted with Langmuir isotherm. Separation factor was between 0 and 1 that indicates the favorable condition for Cr(VI) adsorption on the SMZ.


B Mortazavi, B Barikbin, Gh.r Moussavi,
Volume 3, Issue 3 (10-2010)
Abstract

Backgrounds and Objectives: Geological situation and/or anthropogenic contamination contain an increased concentration of ions such as hexavalent chromium as well as some other dissolved components such as sulfate in the upper of the establishedMCLs (50µg/L). In this paper, simultaneous removal of Cr (VI) and sulfate from water was investigated using nanofiltration as a promising method for reaching drinking water standards.
Materials and Methods: For varying pressure, pH , anion and cation solution effect, Sulfate and Cr (VI) concentration which have chosen were levels found in drinking water sources (Cr=0.1- 0.5mg/L) and (SO4-2= 100-800mg/L).Experiments were performed using NaCl, Na2SO4,K2 Cr2O7and anhydrous CrCl3. 6H2O which prepared with de mineralized water on procedure detailed in standard methods. All salts were purchased from Merck Corporation with purity over 99'.
Results: The results for hexavalent chromium experiments showed that when the concentration decreases, the chromate anions were given a better retention to 4 bars (96'). But when the concentration increases, concentration polarization led to increased removal of Cr (VI) (98'). For Cr (III) the influences of the ionic strength as well as the concentrations were strongly dependant on rejection but operating pressure were found weak. In addition, with increasing total dissolved solids, perfect rejection of chromium was seen. The effect of pH showed that better retention was obtained at natural and basic pH.
Conclusion: This study indicates that the nature of anions and cations, driven pressure and pH have significant effect on nano filtration operation. Research findings show that it seems nano filtration is a very good promising method of simultaneous removal of Cr (VI) and sulfate from water.


M Shirzad Siboni, M. T Samadi, A.r Rahmani, A.r Khataee, M Bordbar, M.r Samarghandi,
Volume 3, Issue 3 (10-2010)
Abstract

Backgrounds and Objectives: Industrial wastewater included the heavy metal is one of the important sources of environmental pollution. Hexavalent chromiumand divalent nickel are founded in plating wastewater which is harmful for human health and environment. Therefore, the purpose of this research is investigation of photocatalytic removal of hexavalent chromium and divalent nickel from aqueous solution using UV/TiO2 process in a batch system.
Materials andMethods: At first, reactor was designed. Then, optimumdosage of TiO2 was obtained equal to 1 g/L, with variation TiO2 dosage at constant pH and initial concentrations of hexavalent chromium and divalent nickel. The effect of pH, contact time and initial concentration of hexavalent chromium was studied at the constant amount of TiO2 (1gr/L).
Results: The result showed that photocatalytic removal efficiency increased with increasing reaction time and TiO2 dosage. In addition, it was found that removal efficiency of hexavalent chromium was decreased by increasing initial chromium concentration and pH. But, photocatalytic removal efficiency of nickel ion was increased and decreased by increasing of pH and initial nickel concentration, respectively.
Conclusion: The results showed that UV/TiO2 was an effective method in removal of hexavalent chromium and divalent nickel from aqueous solutions


E Aseman, Gh.r Mostafaii, H Sayyaf, H.a Asgharnia, H Akbari, L Iranshahi,
Volume 8, Issue 3 (12-2015)
Abstract

Background and Objectives: In the field of environmental risk assessment, the earthworms are considered as the major component of the soil, and are important bio- indicators to measure the environmental health and quality of the soil. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in Bioremediation the soils contaminated with chromium and cadmium.

Methods and Materials: The study batch experiments were conducted on the soil samples contaminated with chromium and cadmium. The initial concentration of chromium and cadmium in soil was 0.04 and 0.08 mg/g. 30 worms were added to each 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. ICP spectrometry we used to measure the concentration of chromium and cadmium. The data were analyzed using SPSS version 11.5 software.
Results: There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to the initial amount of 0.1 mg/g. On the other hand, chromium concentration of the soil decreased from 0.14 to 0.1 mg/g after 42 days.

Conclusion: said the research indicated that increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using the worms for bioremediation is not recommended. Although, this method is effective to remove cadmium from the soils having cadmium with concentrations of 0.04 and 0.08 mg/g but it needs further investigation.


F Mohammadi, S Rahimi, Z Yavari,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated.

Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN). Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized.

Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI) are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984) with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results.

Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be achieved.


Ar Mesdaghinia, S Nasseri, M Hadi,
Volume 9, Issue 3 (12-2016)
Abstract

Background and Objective: Exposure to chemicals such as heavy metals can be occurred through the route of drinking water consumption. Chromium is an important pollutant because of its role in the appearance of carcinogenic and non-carcinogenic health effects in humans. In this study, we studied the carcinogenic risk and non-carcinogenic hazard of chromium due to the consumption of bottled drinking water distributed throughout Iran.

Materials and Methods: The Hazard Quotient (HQ) and Excess Lifetime Cancer Risk (ELCR) indices were calculated. Monte-Carlo simulation technique was adopted for simulating  uncertainty in the estimation of HQ and ELCR based on the input variables namely the concentration of pollutant, per capita water consumption, body weight, reference dose, biological availability, and source contribution factors. 

Results: The average concentration of chromium in bottled waters determined was 4.79 ± 2.32 µg/L. The amounts of HQ and ELCR  for the age groups of  lower than  2, 2 to 6, 6 to 16 and over 16 years old were 0.000354, 0.00292, 0.00236, 0.00147 and 4.04×10-11, 5.99×10-10, 8.61×10-10 and 2.34×10-9, respectively.

Conclusion: In regard to the concentration of chromium in bottled waters in Iran, the incidence probability and the possibility of carcinogenic and non-carcinogenic effects by this pollutant due to the consumption of bottled water are considerably low and there is no health concern for any age groups.


M Sabonian, Ma Behnajady,
Volume 11, Issue 2 (9-2018)
Abstract

Background and Objective: Chromium is present in two oxidation forms of Cr(III) and Cr(VI). Cr(III) is less toxic than Cr(VI). The aim of this article was to optimize an artificial neural network structure in modeling the photocatalytic reduction of Cr(VI) by TiO2-P25 nanoparticles.
Materials and Methods: In this work, an artificial neural network (ANN) for the modeling photocatalytic reduction Cr(VI) by TiO2-P25 nanoparticles were used and its structure was optimized. The operating parameters were initial concentration of chromium, amount of photocatalyst, ultraviolet light irradiation time and pH. All the experiments were conducted in a batch photoreactor. The Cr(VI) concentration was measured with a UV/Vis spectrophotometer. ANN calculations were performed using Matlab 7 software and the ANN toolbox.
Results: The results show that the optimization of the ANN structure and the use of an appropriate algorithm and transfer function could significantly improve performance. The proposed neural network in modeling the photoactivity of TiO2-P25 nanoparticles in reducing Cr(VI) was acceptable, based on a good correlation coefficient (0.9886) and a small mean square error (0.00018). All the input variables affected the reduction of Cr(VI), however the effect of pH with an impact factor of 34.15 % was more significant than the others. The results indicated that pH = 2 was the best pH for photocatalytic reduction of Cr(VI). Increasing photocatalyst dosage and irradiation time in the investigated range increased Cr(VI) photocatalytic reduction.
Conclusion: Optimized structure of the ANN includes a three-layer feed-forward back propagation network with 4:10:1 topology and the most appropriate algorithm is a scaled conjugate gradient backpropagation algorithm.
 

Arezoo Balighian, Mitra Ataabadi,
Volume 13, Issue 2 (8-2020)
Abstract

Background and Objective: Hexavalent chromium is reported to be highly toxic, mutagenic and carcinogenic; hence treatment of water and wastewater contaminated with this element by low-cost and environmentally friendly methods is of great importance. Therefore the aim of present study was to evaluate the efficiency of Fe(II) modified bentonite for hexavalent chromium removal from a simulated wastewater.
Materials and Methods: In this study, Fe(II) modified bentonite was synthesized. Structure and morphology of bentonite were investigated by XRD and SEM techniques. Experiments were carried out as central composite design with three input parameters namely initial hexavalent chromium, pH and adsorbent dosage at 5 levels. Finally, the results were assessed by adsorption isotherm models.
Results: The findings revealed that complete removal efficiency of Cr (VI) achieved at pH of 2, initial hexavalent chromium concentration of 20 mg/L and adsorbent dose of 5 g/L. The adsorption isotherm model found to fit well with Langmuir isotherm model and revealed that the monolayer adsorption of hexavalent chromium at adsorbent surface was happened. The equilibrium data better fitted the Langmuir isotherm model suggested a monolayer adsorption nature of the modified bentonite.
Conclusion:  The findings in this study showed the promise of use of Fe(II) modified bentonite for Cr (VI) removal. Moreover, response surface methodology can be used as an effective method to optimize hexavalent chromium removal from wastewaters. 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb