Search published articles


Showing 1 results for Consequence Modeling

H Cheraghi, A Soltanzadeh, S Ghiyasi,
Volume 11, Issue 2 (9-2018)
Abstract

Background and Objective: Ethylene oxide (EO) is a very toxic and dangerous substance with a high potential for explosion and fire. Ethylene oxide units are among the most hazardous units in petrochemical industries. This study was designed to analyze and model the consequences of ethylene oxide storage tanks explosion in one of Iran's petrochemical industries.
Materials and Methods: In this study, the consequences of the ethylene oxide storage tanks explosion in a petrochemical industry was identified and analyzed. This study was conducted in 2017 using PHAST software version 6.54. For this study, two climate conditions including the first climate conditions (spring and summer) and the second climate conditions (autumn and winter) were considered.
Results: The results of the modeling for the first and second climate conditions showed that there were possibility of severe damages due to the explosion consequences up to 204 and 256 meters, respectively. In addition, based on the criteria for assessing the consequences of accidents associated with damage levels, such as the explosion wave, the wind speed and direction due to the sudden release scenario and the numerical results related to the modeling, the consequence of this scenario in the second climate conditions (autumn and winter) was higher than the first climate conditions (spring and summer).
Conclusion: The findings of the study indicated that, in addition to the high risk of explosion of ethylene oxide storage tanks, the modeling scenarios in different climate conditions have different consequences. Thus, more attention should be paid to safety of these equipment as risk centers in the petrochemical industry and similar industries.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb