Search published articles


Showing 2 results for Cyclone

Hossein Amjadsoroudi, Farshid Ghormani Shahna, Abdorahman Bahrami, Javad Fardmal,
Volume 6, Issue 1 (5-2013)
Abstract

Background and Objectives: Cyclone is one of the most utilized dust collectors for airborne particles control. It separates particles from airflow by centrifugal force. However, it is not effective in collecting very fine particles smaller than 10 μm in diameter. The aim of this study was to assess the performance of charging particles on cyclone efficiency in collecting particles smaller than 1 μm.
 Materials and Methods: To achieve the above aim, a pilot air conditioning system equipped with conventional cyclone of Lapple model was designed and installed. A high voltage (18 KV) DC power supply was used for charging silica particle in corona charger. Isokinetic probe was used for particles sampling at upstream and downstream of cyclone under different study conditions and measurement was carried out using Grimm 1.08 dust counter.
Results: Charging fine airborne silica particles caused a significant increase in collection efficiency. There is a direct relationship between collection efficiency and charging voltage, so that the total particles collection efficiency was increased from 2.7 to about 72% with respect of increasing charging voltage from zero to 18 Kv. However, inlet air velocity has a negative effect on the collection efficiency of particles charged.
Conclusion: Applying electrocyclone in collecting fine particles smaller than 1 µm is more efficient compared with that of conventional cyclones.


Gh Hesam, F Ghorbani Shahna, A Bahrami,
Volume 7, Issue 4 (1-2015)
Abstract

Background and Objectives: Emission of volatile organic compounds and unpleasant smell are the important characteristics of the rendering plant, causing disturbance for the workers and nearby residents. In order to prevent the spread of air pollutants and to provide favorable environment, application of treatment technologies is essential. Materials and Methods: In this study, in order to select suitable collector and ventilation system for rendering plant, air sampling was performed via NIOSH sampling methods (1501, 1300, 1600, and 2002). Totally, 24 air samples were collected from the ambient air, air pollution source, and worker’s breathing zone using two sorbent, activated charcoal and silica gel and were analyzed using GC-MS. Then, the local ventilation system was designed based on the qualification and quantitation analysis of air samples. The stairmand high efficiency cyclone and thermal oxidizer were designed for dust control and gas cleaning respectively. Results: In total, 41 chemical pollutants in exhaust air from rendering plant were identified these compounds included hydrocarbons, aldehydes, ketones, alcohols, ethers, halogenated compounds, sulfur compounds, nitrogen compounds, and acids. The results of ventilation system designing showed that the system with airflow of 5725 m3/h and a cyclone with the diameter of 1 m and the height of 4 m could remove 50% of particles with 9.45-micron diameter. Gaseous pollutants were removed using thermal oxidation via the consumption of 96 m3/h fuel gas flow. The chamber volume was 6.67 m3. The daily fuel costs were estimated 310000 RLS. Conclusion: Application of local exhaust ventilation system and integrated collectors for control of air pollutants in rendering plant can remove large amounts of particulate and gaseous pollutants. Control of these pollutants can cause loss of smell nuisance and environmental pollution and improving the health and welfare of workers and neighboring residents of such industries.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb